
ROUTERRETRIEVER: Exploring the Benefits of Routing
over Multiple Expert Embedding Models

Hyunji Leeκ* Luca Soldainiα Arman Cohanγ,α Minjoon Seoκ Kyle Loα

κ KAIST AI α Allen Institute for AI γ Yale University
hyunji.amy.lee@kaist.ac.kr {lucas, kylel}@allenai.org

Abstract

Information retrieval methods often rely on a single em-
bedding model trained on large, general-domain datasets
like MSMARCO. While this approach can produce a re-
triever with reasonable overall performance, models trained
on domain-specific data often yield better results within their
respective domains. While prior work in information retrieval
has tackled this through multi-task training, the topic of com-
bining multiple domain-specific expert retrievers remains un-
explored, despite its popularity in language model generation.
In this work, we introduce ROUTERRETRIEVER, a retrieval
model that leverages multiple domain-specific experts along
with a routing mechanism to select the most appropriate ex-
pert for each query. It is lightweight and allows easy addi-
tion or removal of experts without additional training. Eval-
uation on the BEIR benchmark demonstrates that ROUTER-
RETRIEVER outperforms both MSMARCO-trained (+2.1 ab-
solute nDCG@10) and multi-task trained (+3.2) models. This
is achieved by employing our routing mechanism, which sur-
passes other routing techniques (+1.8 on average) commonly
used in language modeling. Furthermore, the benefit gener-
alizes well to other datasets, even in the absence of a spe-
cific expert on the dataset. To our knowledge, ROUTERRE-
TRIEVER is the first work to demonstrate the advantages
of using multiple domain-specific expert embedding models
with effective routing over a single, general-purpose embed-
ding model in retrieval tasks1.

Introduction
While a single embedding model trained on large-scale
general-domain datasets like MSMARCO (Campos et al.
2016) often performs well, research shows that models
trained on domain-specific datasets, even if smaller, can
achieve superior results within those domains (Izacard et al.
2021; Bonifacio et al. 2022). Moreover, finetuning on MS-
MARCO after pretraining with contrastive learning can
sometimes degrade performance on specific datasets (Wang
et al. 2023; Lee et al. 2023). To improve embedding models
for domain-specific datasets, previous studies have explored
approaches such as data construction (Wang et al. 2021; Ma
et al. 2020) and domain adaptation methods (Xin et al. 2021;
Fang et al. 2024). However, less attention has been paid to

* Work performed during internship at AI2.
1Code in https://github.com/amy-hyunji/RouterRetriever

leveraging multiple expert embedding models and routing
among them to select the most suitable one during inference.

In this work, we introduce ROUTERRETRIEVER, a re-
trieval model that leverages multiple domain-specific experts
with a routing mechanism to select the most suitable expert
for each instance. For each domain, we train gates (experts),
and during inference, the model determines the most rele-
vant expert by computing the average similarity between the
query and a set of pilot embeddings representing each ex-
pert, selecting the expert with the highest similarity score.
ROUTERRETRIEVER is lightweight, as it only requires the
training of parameter-efficient LoRA module (Hu et al.
2021) for each expert, resulting in a minimal increase in pa-
rameters. Additionally, ROUTERRETRIEVER offers signifi-
cant flexibility: unlike a single model that requires retraining
when domains are added or removed, ROUTERRETRIEVER
simply adds or removes experts without the need for further
training.

Evaluation on the BEIR benchmark (Thakur et al. 2021)
with various combinations of experts highlights the ben-
efits of having multiple expert embedding models with a
routing mechanism compared to using a single embed-
ding model. When keeping the total number of training
datasets constant, ROUTERRETRIEVER consisted of only
domain-specific experts without an MSMARCO expert out-
performs both a model trained on the same dataset in a multi-
task manner and a model trained with MSMARCO. Also,
adding domain-specific experts tends to improve perfor-
mance even when an expert trained on a large-scale general-
domain dataset like MSMARCO is already present, sug-
gesting that, despite the capabilities of a general-domain
experts, domain-specific experts provide additional bene-
fits, underscoring their importance. Moreover, ROUTERRE-
TRIEVER consistently improves performance as new experts
are added, whereas multi-task training tends to show per-
formance degradation when a certain number of domains
are included. This indicates the advantage of having sepa-
rate experts for each domain and using a routing mechanism
to select among them. Notably, the benefits of ROUTER-
RETRIEVER generalize not only to datasets that have cor-
responding experts but also to additional datasets without
specific experts.

We further explore the factors behind these performance
benefits. First, ROUTERRETRIEVER consistently shows im-

ar
X

iv
:2

40
9.

02
68

5v
1

 [
cs

.I
R

]
 4

 S
ep

 2
02

4

proved performance with the addition of more experts
(gates), suggesting that broader domain coverage by experts
enhances retrieval accuracy. This trend holds even in an or-
acle setting, where the gate that maximizes performance is
always selected. Notable, adding a new expert for a different
domain yields greater performance gains than adding addi-
tional experts within the same domain. Second, we observe
that parametric knowledge influences embedding extraction.
This observation supports the idea that training with domain-
specific knowledge improves the quality of embedding ex-
traction of the domain. Last, the performance difference be-
tween an instance-level oracle (which routes each instance
to its best expert) and a dataset-level oracle (which routes
queries to the expert with the highest average performance
for the dataset) suggests that queries may benefit from a
knowledge of other domains, supporting the effectiveness
of our routing technique. Our results point to potential re-
search opportunities in improving routing techniques among
multiple expert retrievers, a direction that leads to the devel-
opment of a retriever system that performs well across both
general and domain-specific datasets.

Related Works
Domain Specific Retriever There exists substantial re-
search on retrieval models that aim to improve perfor-
mance on domain-specific tasks. One approach focuses on
dataset augmentation. As domain-specific training datasets
are often unavailable and can be costly to construct, re-
searchers have developed methods that either train mod-
els in an unsupervised manner (Lee, Chang, and Toutanova
2019; Gao, Yao, and Chen 2021; Gao and Callan 2021) or
fine-tune models on pseudo-queries generated for domain-
specific datasets (Bonifacio et al. 2022; Ma et al. 2020;
Wang et al. 2021). Another approach is developing domain-
specific embeddings. A common approach is training in a
multi-task manner over domain-specific datasets (Lin et al.
2023; Wang et al. 2021). Recent works have aimed to im-
prove domain-specific retrievers by developing instruction-
following retrieval models (Asai et al. 2022; Weller et al.
2024; Oh et al. 2024; Su et al. 2022; Wang et al. 2023);
instruction contains such domain knowledge. Another ex-
ample is Fang et al. (2024) which trains a soft token for
domain-specific knowledge. While these methods also aim
to extract good representative embeddings for the input text,
these methods rely on a single embedding model and pro-
duce domain-specific embeddings by additionally including
domain-specific knowledge (e.g., appended as instructions)
to the input. ROUTERRETRIEVER differs from these prior
methods by allowing for the employment of multiple embed-
ding models where rather than providing the domain knowl-
edge to the input, added to the model as parametric knowl-
edge to produce the domain representative embeddings.

Routing Techniques Various works have focused on de-
veloping domain-specific experts and routing mechanisms
to improve general performance in generation tasks. One ap-
proach simultaneously trains experts (gates) and the rout-
ing mechanism (Sukhbaatar et al. 2024; Muqeeth et al.
2024). Another line of work includes post-hoc techniques

Query
Base

Encoder

Gate A

Expert
Encoder A

Pilot Embeddings for A

Gate B

Gate C
1

2

Final Query Embedding
Pilot Embedding Library

Expert
Encoder B

Pilot Embeddings for B

Expert
Encoder C

Pilot Embeddings for C

Figure 1: ROUTERRETRIEVER: 1⃝ Given a query, we first
extract its embedding using a base encoder. We then cal-
culate an average similarity between the query embedding
(black dot) and the pilot embeddings for each gate (orange
dots for Gate A, red dots for Gate B, and blue dots for Gate
C). The gate with the highest average similarity (Gate A in
this case) is selected. 2⃝ The final query embedding is then
produced by passing the query to Expert Encoder A, which
consists of the base encoder combined with Gate A, the se-
lected expert gate (LoRA).

that do not require additional training for routing. Some
approaches use the model itself as the knowledge source
by training it on domain-specific knowledge (Feng et al.
2023), incorporate domain-specific knowledge in the token
space (Belofsky 2023; Shen et al. 2024), or select the most
relevant source from a sampled training dataset of each do-
main (Ye et al. 2022; Jang et al. 2023). Routing techniques
have also been investigated for improving generation qual-
ity in retrieval-augmented generation tasks; Mallen et al.
(2022) explores routing to decide whether to utilize exter-
nal knowledge and Jeong et al. (2024) focuses on routing
to choose among different retrieval approaches. However,
there has been less emphasis on applying these techniques
to information retrieval tasks. In this work, we investigate
the benefits of leveraging multiple domain-specific experts
and routing mechanisms in information retrieval, contrasting
this approach with the traditional methods of using a sin-
gle embedding model trained on a general-domain dataset
or multi-task training across various domains. Additionally,
we find that simply adapting routing techniques from gener-
ation tasks to information retrieval does not yield high per-
formance, underscoring the importance of developing rout-
ing techniques tailored specifically for information retrieval.

Router Retriever
In this section, we introduce ROUTERRETRIEVER, a re-

trieval model composed of a base retrieval model and mul-
tiple domain-specific experts (gates). As shown in Figure 1,
for a given input query, 1⃝ the most appropriate embedding
is selected using a routing mechanism. Then, 2⃝ the query
embedding is generated by passing the query through the
selected gate alongside the base encoder.

In the offline time, we train the experts (gates) with

Algorithm 1: Constructing Pilot Embedding Library

Require: Domain-specific training datasets D1, . . . , DT , gates G = {g1, . . . , gT }
1: Initialize empty set P = {} for the pilot embedding library
2: for each dataset Di in {D1, . . . , DT } do
3: Initialize an empty list Li ← []
4: for each instance xj in Di do
5: gmax(xj)← argmaxgl∈G Perf.(gl, xj) // Find the gate with maximum performance gmax for instance xj

6: Add pair (xj , gmax) to Li

7: end for
8: for each gate gm in G do
9: Groupm ← {xj | gmax = gm for (xj , gmax) in Li} // Group all instances xj for which gm is the maximum performing

gate
10: if Groupm is not empty then
11: E← BaseEncoder(Groupm) // Extract embeddings using the base encoder
12: cm ← k-means(E, k = 1) // Compute the centroid embedding by clustering cluster size 1, which is the pilot

embedding
13: if gm exists in P then
14: Append cm to the list associated with gm in P (P[gm])
15: else
16: Add a new entry {gm : [cm]} to P
17: end if
18: end if
19: end for
20: end for
21: Output: Pilot embeddings library P

domain-specific training datasets and construct a pilot em-
bedding library. This library contains pairs of pilot em-
beddings for each domain along with the corresponding ex-
pert trained on that domain. Please note that this process is
performed only once. During inference (online time), when
given an input query, a routing mechanism determines the
appropriate expert. We calculate the similarity score be-
tween the input query embedding and the pilot embeddings
in the pilot embedding library, and then choose the expert
with the highest average similarity score.

We use Contriever (Izacard et al. 2021) as the base en-
coder and train parameter-efficient LoRA (Hu et al. 2021)
for each domain as the gate for that domain keeping the
model lightweight. For example, in the case of Figure 1,
ROUTERRETRIEVER includes a base encoder with three
gates (experts): Gate A, Gate B, and Gate C, and the Expert
Encoder A is composed of the base encoder with Gate A
(LoRA trained on a dataset from domain A) added. This ap-
proach allows for the flexible addition or removal of domain-
specific gates, enabling various gate combinations without
requiring further training for the routing mechanism.

Experts (Gates) For each domain Di, where i = 1, . . . , T
and T is the total number of domains, we train a separate
expert (gate) gi using the corresponding domain dataset. Af-
ter the training step, we have a total of T different gates,
G = {g1, g2, . . . , gT }, with each gate gi specialized for a
specific domain.

Pilot Embedding Library Given a domain-specific train-
ing dataset Di = {x1, . . . , xk} where xj is an instance
in Di, we perform inference using all gates G to iden-

tify which gate provides the most suitable representative
embedding for each instance (line 4-7 in Alg. 1). For
each instance xj , we select gmax, the gate that demon-
strates the highest performance, defined as gmax(xi) =
argmaxgj∈G Performance(gj , xi). This process produces
pairs (xj , gmax) for all instances in the dataset Di.

Next, we group these pairs by gmax, constructing T
groups, one for each domain. Then for each group, we per-
form k-means clustering with cluster size 1 to get the pilot
embedding (line 8-19 in Alg. 1). In specific, with the con-
structed pairs (xj , gmax), we group them by the ones that
have the same gmax, Groupm, which contains list of in-
stances xj with same gate as the max gate. This results in
T groups, one for each domain (m = 1, · · · , T). If the
Groupm is not empty, we first extract all embeddings for
instances in the group with the base encoder (BaseModel).
We then apply k-means clustering () to these embeddings
with a cluster size of one. The centroid of this cluster cm is
taken as the pilot embedding for the domain. This results in
one pilot embedding per group, yielding a maximum of T
pilot embeddings for the training dataset Di. Each of these
embeddings is associated with a different gate, representing
the most suitable one for that domain. Please note that since
when Groupm is empty, we do not extract pilot embedding
for the empty group (cluster), thereby the number of pilot
embeddings for the training dataset could be less than T .

By repeating this process across all domain-specific train-
ing datasets D1, . . . , DT , we obtain T pilot embeddings for
each gate, one from each domain-specific training dataset
(repeating line 3-19 in Alg. 1 for all training dataset
D1 · · ·DT). Consequently, the pilot embeddings contains

a maximum of T 2 pilot embeddings, with each of the T
domain-specific training datasets contributing up to T pilot
embeddings.

For example, consider a scenario with three experts, each
trained on one of the following datasets: SciFact, FiQA-
2018, and HotpotQA. To construct the pilot embedding li-
brary, we first perform inference on all training instances
used to train the SciFact expert across all three experts to
determine which expert produces the most suitable embed-
ding (line 4-7 in Alg. 1). The chosen gate can be any of
the three experts. Next, we group all training instances from
the SciFact dataset according to the expert that achieved
the highest performance for each instance, resulting in up
to three groups: instances where the SciFact expert, FIQA-
2018 expert, or HotpotQA expert performed best. For each
group, we apply k-means clustering with k = 1 to compute
the centroid, which serves as the pilot embedding for that
group. This pilot embedding is added to the pilot embed-
ding library, with the corresponding expert as the key. For
example, if the centroid is extracted from the group where
the HotpotQA expert performed best, the HotpotQA expert
is considered the most suitable expert, even if the instances
are from the SciFact dataset. This process adds three pilot
embeddings to the library, one for each expert (lines 8-19
in Alg. 1). We repeat this process for all domains (the ex-
ample on top is for SciFact and we repeat the process for
FIQA-2018 and HotpotQA), ultimately creating a total of a
maximum of nine pilot embeddings in the library, with three
pilot embeddings associated with each expert.

Routing Mechanism When given an input query, we cal-
culate the similarity between the query embedding extracted
from the base encoder and the T 2 pilot embeddings in
the pilot embedding library. We then average the similar-
ity scores for T pilot embeddings associated with the same
gate, resulting in a mean similarity score for each gate. The
gate corresponding to the highest mean similarity score is
selected as the most suitable embedding model.

Experimental Setup
Baselines We compare the performance of ROUTERRE-
TRIEVER with when training on the same dataset in a
multi-task manner (Multi-Task) and training on a large-
scale general-domain dataset MSMARCO (MSMARCO-
Trained). Additionally, following previous works (Muqeeth
et al. 2024; Jang et al. 2023), we evaluate performance us-
ing two oracle settings: Best Individual and Oracle. The
Best Individual setting is a dataset-level oracle that routes
all queries in a dataset to the expert with the highest average
performance for that dataset, while the Oracle setting is an
instance-level oracle that routes each individual instance to
its best-performing expert.

We also conduct experiments with various other rout-
ing techniques commonly used in language modeling tasks;
ExpertClassifierRouter (Shen et al. 2024), Classification-
HeadRouter (Muqeeth et al. 2024), and DatasetRouter (Ye
et al. 2022; Jang et al. 2023). ExpertClassifierRouter em-
ploys a binary classifier for each gate to calculate the prob-
ability of that gate being selected. The gate with the high-

30 20 10 0 10 20 30

40

30

20

10

0

10

20

30

40

SciFact
HotpotQA
trec-covid
nfcorpus
nq
fever
dbpedia
climate-fever
fiqa
msmarco
arguana
touche2020
quora
scidocs

20 10 0 10 20

20

10

0

10

20

SciFact
HotpotQA
trec-covid
nfcorpus
nq
fever
dbpedia
climate-fever
fiqa
msmarco
arguana
touche2020
quora
scidocs

Figure 2: TSNE visualization of contriever embeddings for
queries (left) and contexts (right) when sampled 100 in-
stances from each dataset. Datasets with the same domain
are in similar colors.

est probability is chosen for the final selection. Classifica-
tionHeadRouter uses a single classifier layer to determine
the appropriate expert for each instance. DatasetRouter is
the most similar to ROUTERRETRIEVER, as it selects the
gate by retrieving the instance with the highest similarity
score. However, there are two key differences: ROUTERRE-
TRIEVER uses the predicted label, whereas DatasetRouter
relies on the original dataset label. Also, ROUTERRE-
TRIEVER incorporates a clustering step to group instances,
while DatasetRouter randomly samples 100 instances from
the training dataset. Further details of the baselines and
training methods for each are provided in the supplementary
materials.

Dataset We used datasets in BEIR benchmark (Thakur
et al. 2021), which includes 14 datasets across 6 domains:
Bio-Medical, Wikipedia, Finance, Misc., Quora, and Scien-
tific2. To train domain-specific gates, we utilize the train-
ing sets provided by BEIR. Due to the limited number of
datasets with available training sets, we also employed gen-
erated queries provided by BEIR3. The models were eval-
uated using the test sets. We categorize the datasets in the
Misc. domain as separate general domains, Wikipedia as a
general domain, and Bio-Medical, Finance, Quora, and Sci-
entific as domain-specific datasets based on how broadly
each instance is distributed. As illustrated in Figure 2, which
shows the embeddings extracted from the pre-trained Con-
triever model (our base model), datasets in the Misc. domain
are often widely dispersed even within the same domain. Al-
though the Wikipedia datasets are generally close to others
within the same domain, they also exhibit a broad spread.
In contrast, datasets from the Bio-Medical, Finance, Quora,
and Scientific domains tend to be more compact and closely
clustered.

Hyperparameters We use the pre-trained Con-
triever (Izacard et al. 2021) as our base encoder and
train gates (LoRA) according to the settings in Lee et al.
(2023), with a rank of 8, an alpha of 32 per gate, thereby
training approximately 0.5% of the parameters (about 1M

2Details of datasets and domains in supplementary
3https://huggingface.co/BeIR

Misc Wiki Bio Science Quora Finance

AR MS HO NF SF QU FI Avg

MSMARCO-Trained 37.2 25.7 57.6 31.7 67.2 84.1 28.8 47.5

Multi-Task 36.9 22.4 52.1 32.9 69.4 82.0 28.9 46.4

ROUTERRETRIEVER 38.6 23.0 59.9 33.4 77.6 83.8 30.8 49.6

ROUTERRETRIEVER (w/o MS expert) 39.5 22.2 59.5 33.4 76.0 83.6 30.5 49.3

Best Individual 40.2 25.7 59.9 34.4 79.8 84.5 32.2 50.9

Oracle 48.5 34.5 66.6 39.0 85.4 89.9 39.6 57.6

Table 1: ROUTERRETRIEVER consistently outperforms both the MSMARCO-Trained and Multi-Task models in terms of
nDCG@10. Even without using the MSMARCO expert (ROUTERRETRIEVER w/o MS expert), thus maintaining the same
total number of training datasets as the MSMARCO-Trained, ROUTERRETRIEVER achieves superior performance. This result
highlights that the performance improvement comes from having diverse domain-specific experts rather than simply the amount
of training data. Additionally, ROUTERRETRIEVER performs comparably to the Best Individual model.

parameters) per gate. For training, we adopt the few-shot
hyperparameters from Izacard et al. (2021): a learning rate
of 1e-4, a batch size of 256 with in-batch negatives, and
a maximum of 500 epochs with early stopping. Gates are
applied only to the query encoder, keeping the context
encoder frozen, as our focus is on understanding the impact
of routing by query instances, thereby eliminating the
influence of routing on the context encoder. We also include
the results of applying gates to the context encoder in the
supplementary materials.

Experimental Results & Discussions
Overall Performance
Table 1 shows the performance of ROUTERRETRIEVER
compared to baseline models using seven domain-specific
gates (AR, MS, HO, NF, SF, QU, and FI)4. ROUTERRE-
TRIEVER outperforms the MSMARCO-trained model, indi-
cating that even with a large-scale general-domain training
dataset, incorporating additional domain-specific gates fur-
ther enhances performance. Also, when keeping the train-
ing dataset the same when comparing ROUTERRETRIEVER
to the Multi-Task model, which is trained with the same
training datasets, ROUTERRETRIEVER consistently shows
higher performance. Moreover, ROUTERRETRIEVER (w/o
MS expert), which excludes the MSMARCO gate but main-
tains the same total number of training datasets as the
MSMARCO-trained model, still achieves superior perfor-
mance. These results underscore the importance of having
separate embedding models (gates) for each domain and dy-
namically selecting the most appropriate gate for each query
rather than relying on a single model to handle multiple do-
mains. For additional results with different combinations of
experts, please refer to the supplementary material.

Affect of Dataset Size when Training Experts
Figure 3 shows the relationship between performance (y-
axis) and the number of training samples (x-axis) across

4All gates, except for MSMARCO, are selected to have the
smallest training dataset from each domain to ensure that the to-
tal number of training dataset is equal to that of MSMARCO when
excluding the MS gate.

0 2000 4000 6000 8000 10000 12000 14000

37.5

38.0

38.5

39.0

39.5

40.0

40.5

41.0

arguana

0 2000 4000 6000 8000 10000 12000 14000

30.5

31.0

31.5

32.0

32.5

33.0

33.5

34.0

nfcorpus

0 2000 4000 6000 8000 10000 12000 14000

66

67

68

69

70

71

72

73

scifact

0 2000 4000 6000 8000 10000 12000 14000

21.75

22.00

22.25

22.50

22.75

23.00

23.25

23.50
msmarco

arguana nfcorpus scifact msmarco

Figure 3: nDCG@10 (y-axis) is plotted against training
dataset size (x-axis). Each line color represents the training
dataset used, and the title of each plot indicates the evalua-
tion dataset.

various datasets. For in-domain evaluation datasets, perfor-
mance generally improves as the number of training samples
increases. However, in out-of-domain evaluation datasets,
simply increasing the number of training samples does not
necessarily lead to better performance. When the same num-
ber of training samples is used, for in-domain cases, experts
consistently achieve the highest performance across all eval-
uation datasets. Interestingly, for out-of-domain cases, ex-
perts perform better when trained on general domains (e.g.,
Arguana and MSMARCO) compared to domain-specific ex-
perts (e.g., SciFact and NFcorpus). We attribute this to the
broader coverage and stability of general-domain datasets,
as illustrated in Figure 2. These results suggest that while
a larger training dataset is generally beneficial for expert in-
domain performance, the coverage of the training dataset has
a more significant impact on out-of-domain performance.

0 1 2 3 4 5 6 7
of Gates

44.4

46.4

48.4

50.4
Av

er
ag

e
ND

CG
@

10

Best Individual
Router Retriever
Multi-Task
MSMARCO
Base Model (Contriever)

Figure 4: Average nDCG@10 (y-axis) by the number of
gates (x-axis) for various models. ROUTERRETRIEVER tend
to show improved performance as number of gates increases,
outperforming MSMARCO-trained model even with just
three gates and showing small gap with Best Individual per-
formance.

0 1 2 3 4 5 6 7
of Gates

44.4

46.4

48.4

50.4

52.4

54.4

56.4

Av
er

ag
e

ND
CG

@
10

Oracle
MSMARCO
Base Model (Contriever)

Figure 5: Average oracle nDCG@10 (y-axis) by the num-
ber of available gates (x-axis). The improvement rate tend to
be higher when adding gates initially and as the number of
gates grows, the rate of increase diminshes.

Impact of Number of Gates
Figure 4 shows that adding gates (x-axis) consis-
tently improves the performance of ROUTERRETRIEVER
(y-axis). Notably, ROUTERRETRIEVER outperforms the
MSMARCO-trained model even with just three gates, in-
dicating that despite not having as diverse or large a training
dataset as MSMARCO, the advantage of having multiple
embedding models and the ability to select the most suit-
able one leads to better performance. ROUTERRETRIEVER
also shows a small gap with the Best Individual performance
which is the in-domain performance for each expert (Oracle
performance for dataset-wise). The performance in multi-
task training tends to fluctuate as the number of domains
(gates) increases. We hypothesize that with a large number
of domains, the model struggles to find the optimal embed-
ding for general cases due to the high variance across train-
ing datasets.

Figure 5 illustrates the performance when we use 7 gates
and increase the number of experts that the model can
choose from, selecting the one with the maximum perfor-

AR QU MS HO SF NF FI
Gate

AR
QU

M
S

HO
SF

NF
FI

Ev
al

 D
at

as
et

10

15

20

25

30

Figure 6: For each evaluation dataset (y-axis), the rate at
which gate tends to show the maximum performance (x-
axis). While general domain datasets (AR, MS, HO) perform
well overall, the domain-specific datasets (SF, NF, FI, QU)
demonstrate particularly strong performance within their re-
spective domains, highlighting the importance of having
gates for domain-specific tasks.

AR QU MS HO SF NF FI
Gate

AR
QU

M
S

HO
SF

NF
FI

Ev
al

 D
at

as
et

0

20

40

60

80

Figure 7: For each evaluation dataset (y-axis), the rate at
which gate the router chooses (x-axis).

mance for each instance. Oracle represents the performance
when the model can route through all 7 gates and choose the
best-performing one instance-wise. As the number of gates
increases, performance consistently improves. Notably, the
rate of improvement is higher when adding gates initially,
and as the number of gates grows, the rate of increase di-
minishes, regardless of the order in which experts are added.
We believe this tendency arises because the routing tech-
nique tends to be more distracted as more gates are added.
Nonetheless, the consistent improvement with additional
gates highlights the potential for further enhancement with
better routing techniques, emphasizing the importance of in-
vestigating these techniques across various expert retrievers.
We randomly varied the order and combination of gates in
the figure but observed that the trend remained consistent.
Details are provided in the supplementary materials.

Maximum Performing Gate Rates and Analysis of
Gate Selection
Figure 6 shows the rate at which each gate achieves the
highest performance across different evaluation datasets.

Misc Wiki Bio Science Quora Finance

AR MS HO NF SF QU FI Avg

MSMARCO-Trained 37.2 25.7 57.6 31.7 67.2 84.1 28.8 47.5

ExpertClassifierRouter 37.9 23.8 53.1 31.5 67.1 82.5 29.1 46.4

ClassificationHeadRouter 38.5 22.6 52.8 32.7 69.6 83.4 28.2 46.8

DatasetRouter 37.3 23.6 58.4 33.1 73.4 83.9 29.9 48.5

ROUTERRETRIEVER 38.6 23.0 59.9 33.4 77.6 83.8 30.8 49.6

Table 2: nDCG@10 performance across different routing techniques commonly used in language modeling. ROUTERRE-
TRIEVER consistently achieves the highest performance, highlighting the need for specialized routing techniques in information
retrieval, given the distinct objectives and usage compared to language modeling.

For general-domain datasets (AR, MS, HO), the best-
performing gate is often distributed across multiple experts.
However, for domain-specific datasets (SF, NF, FI, QU), the
best performance is typically achieved by the gate trained
specifically on that domain. This indicates that while gates
generally perform well on general-domain datasets, having a
domain-specific expert model is essential for achieving high
performance in specialized areas.

Figure 7 shows the rate at which gates are selected by our
routing technique for each evaluation dataset. The MS gate
is often chosen, likely because, as shown in Figure 2, MS-
MARCO instances are broadly distributed, leading to more
generalized pilot embeddings. Since the MS gate performs
well across all datasets (as seen in Figure 6), this selection
seems reasonable. For domain-specific datasets like SF and
FI, the routing strongly favors the gate trained on the re-
spective dataset, which we assume is likely because these
datasets cluster closely together in Figure 2. We add a de-
tailed error analysis of the routing technique in the supple-
mentary.

Impact of Expert Combinations

We experiment with various combinations of experts to as-
sess their impact on performance. Our findings suggest that
broad coverage across domains is critical. Within a single
domain, the specific expert chosen does not significantly af-
fect performance as long as it is trained with a sufficient
amount of training dataset. Adding an expert from a new
domain tends to significantly improve performance while
adding additional experts to a domain that already has an
expert doesn’t yield as much improvement.

Adding domain-specific gates like SciDocs in the Sci-
ence domain or TREC-COVID in the Bio-Medical domain
improves performance for those datasets, with SciDocs in-
creasing from 44.3 to 56.2 and TREC-COVID from 15.1
to 16.1. However, the overall average performance across
all datasets remains relatively stable. We also observed that
performance tends to improve when using experts trained
on larger datasets, consistent with our earlier observation in
Figure 3 that expert performance generally increases with
the size of the training dataset. Detailed results are provided
in the supplementary materials.

w/ Experts w/o Experts Avg

MSMARCO-Trained 47.5 31.6 40.0

Multi-Task 46.4 31.2 38.8

ROUTERRETRIEVER 49.6 31.9 40.8

Best Individual 50.9 34.2 42.6

Oracle 57.6 41.5 49.6

Table 3: ROUTERRETRIEVER show high performance
(nDCG@10) for not only datasets with experts but also gen-
eralizes to those without experts. Each w/ and w/o Experts
contains 7 datasets.

Various Routing Techniques

We experiment with various routing techniques commonly
used in language modeling and compared them with our
proposed routing mechanism. Results in Table 2 show that
the routing technique used in ROUTERRETRIEVER con-
sistently achieves the highest performance. In fact, Classi-
ficationHeadRouter and ExpertClassifierRouter approaches
tend to underperform compared to when using a single ex-
pert trained solely on MSMARCO (MSMARCO-Trained).
DatasetRouter, which is the closest to ROUTERRETRIEVER,
tends to show higher performance than MSMARCO-
Trained but also consistently shows lower performance than
ROUTERRETRIEVER. These results suggest that these rout-
ing techniques are not well-suited for information retrieval
and may even degrade performance compared to using a sin-
gle expert. We hypothesize that the differences in the ef-
fectiveness of routing techniques between language mod-
eling and information retrieval can be explained from two
perspectives. First, in language modeling, experts are often
trained to handle distinct tasks, making them easier to dif-
ferentiate. In contrast, information retrieval involves domain
classification, which may be more challenging. Second, in
language modeling, routing decisions are often made at the
token level, which allows for greater flexibility and reduces
the impact of any single choice. However, in information re-
trieval, where a single representative embedding is required,
the choice of expert is made only once per instance, making
the process more vulnerable to the routing technique used,
and thus requiring greater precision.

General Performance of ROUTERRETRIEVER over
various datasets
Table 3 demonstrates that ROUTERRETRIEVER consistently
outperforms other baselines that rely on a single general-
purpose embedding model5. This is evident not only in
datasets that have their experts (w/ Experts) but also across
various other datasets that do not have their experts (w/o
Experts). These findings suggest that the benefits of having
multiple experts and routing across them extend well beyond
the datasets for which specific experts were trained.

Where does the benefit come from?
We hypothesize that the benefit of having domain-specific
gates comes from the model’s tendency to be influenced
by its parametric knowledge; models trained on domain-
specific datasets are likely to have domain-specific knowl-
edge embedded in their parametric space, enabling them
to produce more meaningful embeddings related to those
domains. To test the hypothesis, we conduct experiments
with the dataset from Zhou et al. (2023), which contains
both original NQ (Kwiatkowski et al. 2019) contexts that
align with the retriever’s parametric knowledge and con-
flicting contexts for each instance. We experiment with Re-
pLlama (Ma et al. 2024) and E5-Mistral (Wang et al. 2023)6

and found that the retrievers surprisingly for all case pre-
fer contexts that align with their parametric knowledge;
they consistently retrieve the original NQ contexts over
conflicting contexts7. This finding supports our hypothesis
that embedding models are influenced by parametric knowl-
edge when extracting embedding thus their knowledge of
domain-specific datasets are better able to extract meaning-
ful embeddings relevant to their domain knowledge. Further
details are in the supplementary.

Efficiency
ROUTERRETRIEVER achieves high efficiency by using
parameter-efficient LoRA gates, which account for only
about 0.5% of the parameters per gate. This makes the ad-
dition of new gates relatively insignificant in terms of pa-
rameter count. In terms of training, it uses the same amount
of training data as in a multi-task approach. However, un-
like multi-task training, which requires retraining the en-
tire model when adding, removing, or changing domains,
ROUTERRETRIEVER allows for these modifications without
additional training, as our routing technique is training-free.
However, during inference, computing the query embedding
involves two forward passes: the first to identify the appro-
priate gate (routing), and the second to generate the final
query embedding. Improving the computation efficiency of
this routing technique is a direction for future work.

5Detailed numbers of the table are in Supplementary.
6We used these two models not Contriever to ensure that the

NQ contexts from Zhou et al. (2023) align with their parametric
knowledge

7We exclude contexts containing an extensive length of con-
texts (context with table information) as they tend to introduce
bias (Thakur et al. 2021)

Conclusion
In this paper, we present ROUTERRETRIEVER, a retrieval
model that integrates multiple domain-specific experts with
a routing mechanism to extract the most suitable embedding
for each query. This approach is both lightweight and flexi-
ble, allowing for the addition or removal of experts without
additional training. Our experiments demonstrate that it con-
sistently outperforms single embedding models, showcasing
the advantages of integrating domain-specific experts. Addi-
tionally, it surpasses various widely used routing techniques
in language modeling, emphasizing the significance of ef-
fective routing for information retrieval tasks. These results
highlight the crucial role of domain-specific experts in im-
proving retrieval performance and suggest that combining
them with efficient routing techniques can significantly en-
hance results, potentially approaching oracle performance.

Acknowledgments
We thank Nandan Thakur, Orion Weller, Jiyeon Kim, and
Hanseok Oh for helpful discussions and constructive feed-
back.

References
Asai, A.; Schick, T.; Lewis, P.; Chen, X.; Izacard, G.; Riedel,
S.; Hajishirzi, H.; and Yih, W.-t. 2022. Task-aware retrieval
with instructions. arXiv preprint arXiv:2211.09260.
Belofsky, J. 2023. Token-Level Adaptation of LoRA
Adapters for Downstream Task Generalization. In Proceed-
ings of the 2023 6th Artificial Intelligence and Cloud Com-
puting Conference, 168–172.
Bondarenko, A.; Fröbe, M.; Beloucif, M.; Gienapp, L.;
Ajjour, Y.; Panchenko, A.; Biemann, C.; Stein, B.;
Wachsmuth, H.; Potthast, M.; and Hagen, M. 2020.
Overview of Touché 2020: Argument Retrieval. In Confer-
ence and Labs of the Evaluation Forum.
Bonifacio, L.; Abonizio, H.; Fadaee, M.; and Nogueira,
R. 2022. Inpars: Data augmentation for information
retrieval using large language models. arXiv preprint
arXiv:2202.05144.
Boteva, V.; Ghalandari, D. G.; Sokolov, A.; and Riezler, S.
2016. A Full-Text Learning to Rank Dataset for Medical
Information Retrieval. In European Conference on Informa-
tion Retrieval.
Campos, D. F.; Nguyen, T.; Rosenberg, M.; Song, X.; Gao,
J.; Tiwary, S.; Majumder, R.; Deng, L.; and Mitra, B.
2016. MS MARCO: A Human Generated MAchine Reading
COmprehension Dataset. ArXiv, abs/1611.09268.
Cohan, A.; Feldman, S.; Beltagy, I.; Downey, D.; and Weld,
D. S. 2020. SPECTER: Document-level Representation
Learning using Citation-informed Transformers. ArXiv,
abs/2004.07180.
Diggelmann, T.; Boyd-Graber, J. L.; Bulian, J.; Ciaramita,
M.; and Leippold, M. 2020. CLIMATE-FEVER: A Dataset
for Verification of Real-World Climate Claims. ArXiv,
abs/2012.00614.

Fang, Y.; Ai, Q.; Zhan, J.; Liu, Y.; Wu, X.; and Cao, Z.
2024. Combining Multiple Supervision for Robust Zero-
Shot Dense Retrieval. In AAAI Conference on Artificial In-
telligence.
Feng, S.; Shi, W.; Bai, Y.; Balachandran, V.; He, T.; and
Tsvetkov, Y. 2023. Knowledge Card: Filling LLMs’ Knowl-
edge Gaps with Plug-in Specialized Language Models.
arXiv preprint arXiv:2305.09955.
Gao, L.; and Callan, J. 2021. Condenser: a Pre-training Ar-
chitecture for Dense Retrieval. In Moens, M.-F.; Huang,
X.; Specia, L.; and Yih, S. W.-t., eds., Proceedings of the
2021 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguis-
tics.
Gao, T.; Yao, X.; and Chen, D. 2021. SimCSE: Simple Con-
trastive Learning of Sentence Embeddings. In Proceedings
of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Lin-
guistics.
Hasibi, F.; Nikolaev, F.; Xiong, C.; Balog, K.; Bratsberg,
S. E.; Kotov, A.; and Callan, J. 2017. DBpedia-Entity v2:
A Test Collection for Entity Search. Proceedings of the 40th
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval.
Hu, J. E.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; and Chen, W. 2021. LoRA: Low-Rank Adaptation of
Large Language Models. ArXiv, abs/2106.09685.
Izacard, G.; Caron, M.; Hosseini, L.; Riedel, S.; Bojanowski,
P.; Joulin, A.; and Grave, E. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv preprint
arXiv:2112.09118.
Jang, J.; Kim, S.; Ye, S.; Kim, D.; Logeswaran, L.; Lee, M.;
Lee, K.; and Seo, M. 2023. Exploring the benefits of training
expert language models over instruction tuning. In Inter-
national Conference on Machine Learning, 14702–14729.
PMLR.
Jeong, S.; Baek, J.; Cho, S.; Hwang, S. J.; and Park, J. C.
2024. Adaptive-rag: Learning to adapt retrieval-augmented
large language models through question complexity. arXiv
preprint arXiv:2403.14403.
Kwiatkowski, T.; Palomaki, J.; Redfield, O.; Collins, M.;
Parikh, A. P.; Alberti, C.; Epstein, D.; Polosukhin, I.; Devlin,
J.; Lee, K.; Toutanova, K.; Jones, L.; Kelcey, M.; Chang,
M.-W.; Dai, A. M.; Uszkoreit, J.; Le, Q. V.; and Petrov, S.
2019. Natural Questions: A Benchmark for Question An-
swering Research. Transactions of the Association for Com-
putational Linguistics, 7: 453–466.
Lee, H.; Soldaini, L.; Cohan, A.; Seo, M.; and Lo, K.
2023. Back to Basics: A Simple Recipe for Improving Out-
of-Domain Retrieval in Dense Encoders. arXiv preprint
arXiv:2311.09765.
Lee, K.; Chang, M.-W.; and Toutanova, K. 2019. Latent Re-
trieval for Weakly Supervised Open Domain Question An-
swering. In ACL 2019.
Lin, S.-C.; Asai, A.; Li, M.; Oğuz, B.; Lin, J. J.; Mehdad,
Y.; tau Yih, W.; and Chen, X. 2023. How to Train Your

DRAGON: Diverse Augmentation Towards Generalizable
Dense Retrieval. ArXiv, abs/2302.07452.
Ma, J.; Korotkov, I.; Yang, Y.; Hall, K.; and McDonald,
R. 2020. Zero-shot neural passage retrieval via domain-
targeted synthetic question generation. arXiv preprint
arXiv:2004.14503.
Ma, X.; Wang, L.; Yang, N.; Wei, F.; and Lin, J. 2024. Fine-
tuning llama for multi-stage text retrieval. In Proceedings of
the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2421–2425.
Maia, M.; Handschuh, S.; Freitas, A.; Davis, B.; McDer-
mott, R.; Zarrouk, M.; and Balahur, A. 2018. WWW’18
Open Challenge: Financial Opinion Mining and Question
Answering. Companion Proceedings of the The Web Con-
ference 2018.
Mallen, A.; Asai, A.; Zhong, V.; Das, R.; Khashabi, D.; and
Hajishirzi, H. 2022. When not to trust language models:
Investigating effectiveness of parametric and non-parametric
memories. arXiv preprint arXiv:2212.10511.
Muqeeth, M.; Liu, H.; Liu, Y.; and Raffel, C. 2024. Learning
to route among specialized experts for zero-shot generaliza-
tion. arXiv preprint arXiv:2402.05859.
Oh, H.; Lee, H.; Ye, S.; Shin, H.; Jang, H.; Jun, C.; and
Seo, M. 2024. INSTRUCTIR: A Benchmark for Instruction
Following of Information Retrieval Models. arXiv preprint
arXiv:2402.14334.
Roberts, K.; Alam, T.; Bedrick, S.; Demner-Fushman, D.;
Lo, K.; Soboroff, I.; Voorhees, E. M.; Wang, L. L.; and
Hersh, W. R. 2020. TREC-COVID: rationale and struc-
ture of an information retrieval shared task for COVID-19.
Journal of the American Medical Informatics Association :
JAMIA, 27: 1431 – 1436.
Shen, S. Z.; Lang, H.; Wang, B.; Kim, Y.; and Sontag, D.
2024. Learning to decode collaboratively with multiple lan-
guage models. arXiv preprint arXiv:2403.03870.
Su, H.; Shi, W.; Kasai, J.; Wang, Y.; Hu, Y.; Ostendorf, M.;
Yih, W.-t.; Smith, N. A.; Zettlemoyer, L.; and Yu, T. 2022.
One embedder, any task: Instruction-finetuned text embed-
dings. arXiv preprint arXiv:2212.09741.
Sukhbaatar, S.; Golovneva, O.; Sharma, V.; Xu, H.; Lin,
X. V.; Rozière, B.; Kahn, J.; Li, D.; Yih, W.-t.; We-
ston, J.; et al. 2024. Branch-Train-MiX: Mixing Expert
LLMs into a Mixture-of-Experts LLM. arXiv preprint
arXiv:2403.07816.
Thakur, N.; Reimers, N.; Rücklé, A.; Srivastava, A.; and
Gurevych, I. 2021. Beir: A heterogenous benchmark for
zero-shot evaluation of information retrieval models. arXiv
preprint arXiv:2104.08663.
Thorne, J.; Vlachos, A.; Christodoulopoulos, C.; and Mittal,
A. 2018. FEVER: a Large-scale Dataset for Fact Extraction
and VERification. ArXiv, abs/1803.05355.
Wachsmuth, H.; Syed, S.; and Stein, B. 2018. Retrieval
of the Best Counterargument without Prior Topic Knowl-
edge. In Annual Meeting of the Association for Computa-
tional Linguistics.

Wadden, D.; Lo, K.; Wang, L. L.; Lin, S.; van Zuylen, M.;
Cohan, A.; and Hajishirzi, H. 2020. Fact or Fiction: Verify-
ing Scientific Claims. ArXiv, abs/2004.14974.
Wang, K.; Thakur, N.; Reimers, N.; and Gurevych, I.
2021. GPL: Generative pseudo labeling for unsuper-
vised domain adaptation of dense retrieval. arXiv preprint
arXiv:2112.07577.
Wang, L.; Yang, N.; Huang, X.; Yang, L.; Majumder, R.;
and Wei, F. 2023. Improving text embeddings with large
language models. arXiv preprint arXiv:2401.00368.
Weller, O.; Chang, B.; MacAvaney, S.; Lo, K.; Cohan, A.;
Van Durme, B.; Lawrie, D.; and Soldaini, L. 2024. Fol-
lowIR: Evaluating and Teaching Information Retrieval Mod-
els to Follow Instructions. arXiv preprint arXiv:2403.15246.
Xin, J.; Xiong, C.; Srinivasan, A.; Sharma, A.; Jose, D.; and
Bennett, P. N. 2021. Zero-shot dense retrieval with mo-
mentum adversarial domain invariant representations. arXiv
preprint arXiv:2110.07581.
Yang, Z.; Qi, P.; Zhang, S.; Bengio, Y.; Cohen, W. W.;
Salakhutdinov, R.; and Manning, C. D. 2018. HotpotQA:
A Dataset for Diverse, Explainable Multi-hop Question An-
swering. In Conference on Empirical Methods in Natural
Language Processing.
Ye, S.; Jang, J.; Kim, D.; Jo, Y.; and Seo, M. 2022. Retrieval
of soft prompt enhances zero-shot task generalization. arXiv
preprint arXiv:2210.03029.
Zhou, W.; Zhang, S.; Poon, H.; and Chen, M. 2023. Context-
faithful Prompting for Large Language Models. In Confer-
ence on Empirical Methods in Natural Language Process-
ing.

Experimental Setup
Baselines
MSMARCO This baseline uses a single MSMARCO
gate, which is trained on a large-scale, general-domain
dataset without any routing techniques applied.

Multi-Task In this approach, we train a single embedding
model on all datasets simultaneously in a multi-task manner.
We keep the number of training datasets for each label the
same, keeping to the one with the minimum value by sam-
pling.

Best Individual This represents the oracle performance
when selecting the single best-performing gate for each
dataset. For example, if the SciFact gate shows the highest
overall performance on the SciDocs evaluation dataset com-
pared to other gates, the performance of the SciFact gate is
recorded as the best individual performance for SciDocs.

Oracle This is the oracle performance when selecting the
best-performing gate for each individual instance. For ex-
ample, within the SciDocs dataset, certain instances might
achieve the highest performance with the SciFact gate, while
others might perform better with the MSMARCO gate. This
baseline measures the performance when, for each instance,
the gate that yields the best result is selected.

ExpertClassifierRouter This routing technique, inspired
from Shen et al. (2024), uses a binary classifier for each gate.
For each instance, the classifier calculates the probability of
selecting or not selecting a specific gate. The gate with the
highest probability of being selected is chosen.

To construct the training dataset, we use the predicted la-
bel (gmax) from the Pilot Embedding Library. For each (xi,
gmax) pair, we randomly sample instances where the maxi-
mum gate differs, which are used to train the "not choosing
the gate" label. The dataset is balanced across labels, with
the following number of training instances for each dataset:
AR (16,108), FI (1070), SF (1,414), NF (892), HO (4,618),
QU (4,326), and MS (4,252). Please note that the training
datasets only consist of instances where only a single gate
shows maximum performance. We then train a binary clas-
sifier for each gate to predict whether an instance is likely to
achieve the highest performance through that gate.

ClassificationHeadRouter This routing technique, in-
spired from Muqeeth et al. (2024), uses a classification head
where the number of labels corresponds to the number of
gates. The gate with the highest predicted probability is se-
lected as the one likely to yield the best performance. To en-
sure balance, we equalize the number of training instances
for each label, matching the dataset with the fewest instances
(NFcorpus with 892 instances, other numbers in ExpertClas-
sifierRouter paragraph). AS a result, the total number of
training instances is 6,244.

DatasetRouter This routing technique, inspired from Ye
et al. (2022); Jang et al. (2023), is the closest baseline
to ROUTERRETRIEVER. It samples 100 training instances
from each dataset and when given a query, it retrieves the

most relevant instances from these samples. The gate trained
on the dataset from which the sample originated is then used.

The key differences between DatasetRouter and
ROUTERRETRIEVER are as follows. (1) ROUTERRE-
TRIEVER uses the predicted label to map an instance
to a gate, while DatasetRouter relies on the original
dataset label. For example, if a training instance from
MSMARCO performs best with the sciFact gate, ROUTER-
RETRIEVER will select the Scifact gate for a similar query,
whereas DatasetRouter will select the MSMARCO gate.
(2) ROUTERRETRIEVER incorporates a clustering step,
grouping similar instances together and using centroid
embeddings, rather than treating each instance individually.

Datasets
Stats of Training Dataset Table 4 presents the statistics
and details of the datasets in the BEIR benchmark, which
we used for training and evaluation. We sampled datasets
from Quora to ensure that the number of training instances
for AR, HO, NF, SF, FI, and QU matches that of MS.

Examples of Oracle Table 5 shows examples of questions
where a gate from a different dataset outperforms the gate
trained on the dataset to which the question belongs. We ob-
serve that questions related to biology often achieve higher
performance with the NFCorpus gate, while those involv-
ing scientific knowledge tend to favor the SciFact gate, and
questions requiring arguments perform better with the Ar-
guana gate. This pattern suggests that, even within a single
dataset, some instances may be more closely aligned with
other datasets, likely because the datasets were not labeled
or constructed to avoid overlap with existing datasets.

Hyperparameters
We trained the Contriever model (Izacard et al. 2021) us-
ing an asymmetric architecture, where the query encoder
encodes the query and the context encoder encodes the con-
text. In our experiments, we fine-tuned only the LoRA (Low-
Rank Adaptation) parameters of the query encoder, train-
ing approximately 1 million parameters per gate (which ac-
counts for 0.5% of the total model parameters). For evalu-
ation, we used the NDCG@10 metric, consistent with pre-
vious works (Thakur et al. 2021; Lee et al. 2023), which
measures the ranking quality of the top 10 retrieved docu-
ments. All results were calculated using the official BEIR
evaluation code. The experiments were conducted on 8 or
fewer A6000 GPUs (each with 40GB of memory). We uti-
lized checkpoints from all pretrained models available on
Huggingface8. The experiments were performed over vari-
ous combinations of gates, with all random seeds set to 10.

When unfreeze context encoder In our main experi-
ments, we focus on scenarios where the context encoder is
frozen, and only the LoRA of the query encoder is trainable
to isolate the impact of routing on the query encoder alone.
However, we observe that the overall performance trend re-
mains similar even when the context encoder is not frozen,

8https://huggingface.co/facebook/contriever

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of Centroids

46.59

47.59

48.59

49.59

Av
er

ag
e

ND
CG

@
10

Figure 8: Average NDCG@10 performance (y-axis) as the
number of centroid embeddings from k-means clustering in-
creases. The performance tend to decrease with more pilot
embeddings, which suggests that when there are too many
pilot embeddings, it tends to distract the performance.

with the unfrozen models generally achieving higher perfor-
mance. Table 6 presents the results when the context encoder
is frozen. In these experiments, ROUTERRETRIEVER con-
sistently outperforms the MSMARCO-trained model and
the Multi-Task model.

Experimental Results & Discussions
Performance of each gates
To analyze the performance trends of each gate, we evaluate
them individually without applying any routing techniques
in Table 7. The performance generally shows the highest
when the evaluation dataset matches the training dataset of
the gate. Additionally, the performance gap between match-
ing and non-matching datasets is larger for domain-specific
datasets (NF, TR, SD, SF, QU, FI). In contrast, gates trained
on general-domain datasets (AR, MS, HO) tend to perform
well across a broader range of datasets.

Affect of Number of Pilot Embeddings
We experiment with how the number of pilot embeddings
affects performance. In Figure 8, we observe that perfor-
mance tends to degrade as the number of pilot embeddings
increases. We hypothesize that this decline is due to the in-
creased number of pilot embeddings becoming distracting,
leading to less effective routing decisions.

Impact of Number of Gates
To investigate the impact of number of gates, we randomly
shuffle the gate order and experiment how adding gates tend
to affect performance. The order of gates added in Figure 4
and Figure 5 is AR, FI, SF, NF, HO, QU, and MS. We tried
various other combinations and could see that the findings
are stabilized (Figure 9): (1) performance tend to increase
with more gates added and (2) the improvement rate tend to
be higher when adding gates initially and as the number of
gates grows, the rate of increase diminishes.

Domain Name Task Train (k) Gen Train (k) Test Corpus (k)

Misc.

ArguAna (AR) (Wachsmuth, Syed, and Stein 2018) Argument Retrieval - 23 1,406 8.7

Touche-2020 (TO) (Bondarenko et al. 2020) Argument Retrieval - - 49 382.5

MSMARCO (MS) (Campos et al. 2016) Passage-Retrieval 503 - 6,980 8,842

Wikipedia

NaturalQuestions (NQ) (Kwiatkowski et al. 2019) Question Answering - - 3,452 2,681

HotpotQA (HO) (Yang et al. 2018) Question Answering 85 - 7,405 5,233

DBpedia (DB) (Hasibi et al. 2017) Entity-Retrieval - - 400 4,636

FEVER (FE) (Thorne et al. 2018) Fact Checking 110 - 6,666 5,417

Climate-FEVER (CL) (Diggelmann et al. 2020) Fact Checking - - 1,535 5,417

Bio-Medical
TREC-COVID (TR) (Roberts et al. 2020) Bio-Medical Retrieval - 432 50 171

NFCorpus (NF) (Boteva et al. 2016) Bio-Medical Retrieval 2.6 10.8 323 3.6

Scientific
SCIDOCS (SD) (Cohan et al. 2020) Citation-Prediction - 67 1,000 25.7

SciFact (SF) (Wadden et al. 2020) Fact Checking 0.8 15.4 300 5.2

Finance FIQA-2018 (FI) (Maia et al. 2018) Question Answering 5.5 162 648 57.6

Quora Quora (QU) Duplicate-Question Retrieval - 200 10,000 523

Table 4: Data statics of 14 datasets in BEIR benchmark. Units of the numbers of training dataset (Train), generated training
dataset (Gen Train), and corpus are in thousands. For most datasets, training datasets are not provided and for some datasets,
we failed to download the generated training dataset.

Table 5: Examples where the dataset label differs from the predicted label based on the highest-performing gate.

Question Dataset Max Gate

APOE4 expression in iPSC-derived neurons results in decreased tau phosphorylation. SciFact NFCorpus
which mir regulates the autophagy of cells SciFact NFCorpus
what kind of leader should i be as the chief executive FiQA-2018 Arguana
what is casual dining dining FiQA-2018 HotpotQA
is it better to be a vegan or vegetarian? Arguana SciFact
could we ban animal testing Arguana SciFact
why do humans eat meat Arguana Quora

Misc Wiki Bio Science Quora Finance

AR MS HO NF SF QU FI Avg

MSMARCO 39.3 25.3 57.9 32.2 66.5 84.3 28.6 47.7

Multi-Task 38.2 21.9 49.8 32.4 65.1 83.3 26.1 45.3

ROUTERRETRIEVER 40.5 21.0 61.3 32.7 68.2 82.5 30.0 48.0

Best Individual 41.2 25.3 60.9 32.2 70.3 86.1 32.2 49.8

Oracle 48.2 33.2 68.4 39.0 76.7 90.0 38.6 56.3

Table 6: Performance of ROUTERRETRIEVER when context encoder is trainable.

Domain Training Data AR TO MS CL DB NQ FE HO NF TR SD SF QU FI

Misc
AR 40.2 17.0 22.4 15.7 31.0 26.2 68.9 54.2 32.8 40.3 15.5 67.8 83.7 29.6

MS 37.2 18.3 25.7 16.0 32.7 29.3 68.8 57.6 31.7 41.2 14.6 67.2 84.1 28.8

Wiki HO 38.5 19.7 22.4 17.7 36.1 28.8 67.8 59.9 32.2 39.1 16.2 66.0 82.8 27.7

Bio
NF 38.7 17.7 21.8 13.4 28.7 24.0 64.6 46.4 34.4 42.1 15.5 66.6 82.5 27.3

TR 37.0 17.3 22.8 16.2 31.6 26.4 68.1 56.6 33.1 67.3 15.7 68.3 83.1 29.1

Science
SD 38.9 18.2 22.8 17.0 32.0 27.3 70.0 57.2 33.2 39.6 16.3 66.7 84.3 28.4

SF 37.9 16.5 21.8 16.0 29.4 25.5 68.1 50.2 32.3 28.8 15.1 79.8 83.6 25.1

Quora QU 37.5 19.4 22.6 13.9 29.0 27.4 63.8 49.1 31.1 49.7 14.3 65.7 84.5 28.3

Finance FI 35.1 18.5 22.1 15.4 29.5 25.2 64.6 46.9 32.3 42.7 15.0 64.5 83.4 32.2

Table 7: Overall performance when evaluating each gate separately.

0 1 2 3 4 5 6 7
of Gates

44.4

46.4

48.4

50.4
Av

er
ag

e
ND

CG
@

10

Case1
Case2
Case3
MSMARCO
Base Model (Contriever)

Figure 9: For each evaluation dataset (y-axis), the rate at
which gate the router chooses (x-axis). We could see that the
trend generalizes with different combination of gates. Case1
is in order of AR, FI, SF, NF, HO, QU, and MS. Case2 is in
reverse order of MS, QU, HO, NF, SF, FI, and AR. Case 3 is
in order of SF, NF, HO, QU, AR, MS, and FI.

Misc Bio Science Finance Avg

AR MS NF SF FI

MSMARCO 37.2 25.7 31.7 67.2 28.8 38.1

Multi-Task 39.4 21.2 28.2 69.2 30.0 37.6

ROUTERRETRIEVER 40.1 22.1 32.3 76.7 30.7 40.4

Best Individual 40.2 22.4 34.4 79.8 32.2 41.8

Oracle 47.5 29.3 38.0 84.5 37.4 47.3

Table 8: ROUTERRETRIEVER performance with four gates:
AR, NF, SF, FI. Avg is an average performance over the
dataset of all gates and MSMARCO.

Detailed numbers by gates
In this section, we show detailed number of performance
with different combinations of gates. Table 8 shows per-
formance with AR, NF, SF, FI as gates. Table 9 shows
performance with AR, HO, NF, SF, FI as gates. Table 10
shows performance with AR, HO, NF, SF, QU, FI as gates.
Table 11 shows performance with AR, MS, HO, NF, SF,
QU, FI as gates. Figure 4 shows only with three gates,
ROUTERRETRIEVER outperforms the MSMARCO-trained
ones thereby in all results, we can see that ROUTERRE-
TRIEVER outperforms the MSMARCO-trained ones and
multi-task baselines.

Routing Mechanism Error Analysis
Figure 7 illustrates the rate at which each router selects a
gate, while Figure 6 shows the rate at which each gate tends
to deliver high performance for the dataset. The discrep-
ancy between these two heatmaps highlights the gap be-
tween ROUTERRETRIEVER and the oracle performance. For
Arguana, the maximum gate distribution is evenly spread,
and the routing tends to follow this distribution closely. For
Quora, while the maximum gate rate is high overall, the rout-
ing often favors the HotpotQA gate in many cases. For MS-
MARCO, the gate trained on MSMARCO generally shows

Misc Wiki Bio Science Finance Avg

AR MS HO NF SF FI

MSMARCO 37.2 25.7 57.6 31.7 67.2 28.8 41.4

Multi-Task 37.7 22.0 58.6 31.1 69.1 28.4 41.2

ROUTERRETRIEVER 38.5 22.3 59.2 33.0 72.2 27.9 42.2

Best Individual 40.2 22.4 59.9 34.4 79.8 32.2 44.8

Oracle 47.7 31.5 65.1 38.6 84.8 38.4 51.0

Table 9: ROUTERRETRIEVER performance with five gates:
AR, NF, SF, FI, HO. Avg is an average performance over the
dataset of all gates and MSMARCO.

high performance, but the routing technique tends to dis-
tribute selections across different gates. For HotpotQA, se-
lecting the HotpotQA gate most frequently results in the
highest performance, with MSMARCO being the next best
option. The routing technique tends to reflect this pattern.
For SciFact, choosing the SciFact gate is crucial in both
cases. For NFCorpus, selecting the NFCorpus gate is impor-
tant, yet the routing technique often opts for the Arguana
gate in many instances. For FiQA-2018, the best perfor-
mance is achieved by selecting the FiQA-2018 gate, and the
routing technique successfully identifies this gate most of
the time.

We specifically investigated why NFCorpus often fails to
select the NFCorpus gate and instead tends to choose the Ar-
guana gate. Upon examining the representative embeddings
for Arguana, we found that many of them are confused with
Arguana embeddings that were extracted from the NFCor-
pus dataset. These instances originally belong to NFCorpus
but show the highest performance with the Arguana gate,
leading to their labeling as Arguana. This suggests that in-
stead of completely removing information about the original
dataset, incorporating a weighting factor between the two
could further improve performance.

Generalization to other datasets
We observe that ROUTERRETRIEVER demonstrates stable
performance not only on datasets with corresponding gates
but also on those without them. The performance with dif-
ferent numbers of gates is shown in the following tables:
Table 13 (4 gates), Table 14 (5 gates), Table 17 (6 gates),
Table 18 (7 gates), and Tables 16 and 15 (8 gates).

When using a similar total number of training datasets
(Table 17), ROUTERRETRIEVER and the MSMARCO-
trained model exhibit comparable generalization perfor-
mance (both at 31.6). However, ROUTERRETRIEVER
achieves higher performance on datasets that have corre-
sponding gates (47.5 for MSMARCO-only vs. 49.3 for
ROUTERRETRIEVER). As more gates are added, both gen-
eralization ability and performance on datasets with corre-
sponding gates tend to improve (Figure 9).

Where does the benefit come from?
We hypothesize that the advantage of using multiple expert
embedding models with routing, rather than a single embed-
ding model, stems from the influence of the training dataset

Misc Wiki Bio Science Quora Finance

AR MS HO NF SF QU FI Avg

MSMARCO 37.2 25.7 57.6 31.7 67.2 84.1 28.8 47.5

Multi-Task 35.3 21.5 55.3 32.3 65.3 82.8 29.3 46.0

ROUTERRETRIEVER 39.5 22.2 59.5 33.4 76.0 83.6 30.5 49.3

Best Individual 40.2 22.6 59.9 34.4 79.8 84.5 32.2 50.5

Oracle 48.0 32.7 65.5 38.8 85.0 89.7 39.2 57.0

Table 10: ROUTERRETRIEVER performance with six gates: AR, NF, SF, FI, HO, QU. Avg is an average performance over the
dataset of all gates and MSMARCO.

Misc Wiki Bio Science Quora Finance

AR MS HO NF SF QU FI Avg

MSMARCO 37.2 25.7 57.6 31.7 67.2 84.1 28.8 47.5

Multi-Task 36.9 22.4 52.1 32.9 69.4 82.0 28.9 46.4

ROUTERRETRIEVER 38.6 23.0 59.9 33.4 77.6 83.8 30.8 49.6

Best Individual 40.2 25.6 59.9 34.4 79.8 84.5 32.2 50.9

Oracle 48.5 34.5 66.6 39.0 85.4 89.9 39.6 57.6

Table 11: ROUTERRETRIEVER performance with seven gates: AR, NF, SF, FI, HO, QU, MS

Misc Wiki Bio Science Quora Finance

AR MS HO NF TR SD SF QU FI Avg

ROUTERRETRIEVER 39.5 22.2 59.5 33.4 44.3 15.1 76.0 83.6 30.5 44.9

ROUTERRETRIEVER (+ TR) 38.4 22.7 59.9 33.3 56.2 14.6 77.3 83.9 31.4 46.4

ROUTERRETRIEVER (+ SD) 38.8 22.9 59.8 32.7 44.7 16.1 76.9 84.1 30.3 45.1

Table 12: ROUTERRETRIEVER performance when adding gates within same domain. The performance tend to improve for the
dataset, but for the rest the difference tend to be minor.

Misc Wiki Bio Science Quora Finance

AR TO MS CL DB NQ FE HO NF TR SD SF QU FI Avg

MSMARCO 37.2 18.3 25.7 16.0 32.7 29.3 68.8 57.6 31.7 41.2 14.6 67.2 84.1 28.8 39.5

Multi-Task 39.4 18.9 21.2 16.1 27.0 23.5 60.0 41.6 28.2 41.6 15.0 69.2 82.2 30.0 36.7

ROUTERRETRIEVER 40.1 18.4 22.1 15.4 33.6 25.5 67.3 55.3 32.3 43.1 15.1 76.7 83.2 30.7 39.9

Best Individual 40.2 18.5 22.4 15.7 31.0 26.2 68.9 54.2 34.4 44.6 15.5 79.8 83.7 32.2 40.5

Oracle 47.5 23.8 29.3 19.7 36.5 33.5 76.7 59.4 38.0 52.5 20.0 84.5 88.1 37.4 46.2

Table 13: ROUTERRETRIEVER performance with four gates: AR, NF, SF, FI. Avg is an average performance over all datasets.

Misc Wiki Bio Science Quora Finance

AR TO MS CL DB NQ FE HO NF TR SD SF QU FI Avg

MSMARCO 37.2 18.3 25.7 16.0 32.7 29.3 68.8 57.6 31.7 41.2 14.6 67.2 84.1 28.8 39.5

Multi-Task 37.7 17.8 22.0 15.4 33.2 26.6 65.5 58.6 31.1 41.6 15.1 69.1 82.7 28.4 39.0

ROUTERRETRIEVER 38.5 19.8 22.3 17.1 35.4 27.8 67.4 59.2 33.0 43.6 15.9 72.2 82.7 27.9 40.2

Best Individual 40.2 19.7 22.4 17.7 36.1 28.8 68.9 59.9 34.4 44.6 16.2 79.8 83.7 32.2 41.8

Oracle 47.7 25.7 31.5 21.3 40.4 37.9 79.5 65.1 38.6 53.1 20.7 84.8 88.7 38.4 48.1

Table 14: ROUTERRETRIEVER performance with five gates: AR, NF, SF, FI, HO. Avg is an average performance over all
datasets.

Misc Wiki Bio Science Quora Finance

AR TO MS CL DB NQ FE HO NF TR SD SF QU FI Avg

MSMARCO 37.2 18.3 25.7 16.0 32.7 29.3 68.8 57.6 31.7 41.2 14.6 67.2 84.1 28.8 39.5

Multi-Task 37.7 17.8 22.0 15.4 33.2 26.6 65.5 58.6 31.1 41.6 15.1 69.1 82.7 28.4 39.0

ROUTERRETRIEVER 38.8 17.7 22.9 15.2 31.7 27.7 67.5 59.8 32.7 44.7 16.3 76.9 84.1 30.3 40.4

Best Individual 40.2 19.7 25.6 17.7 36.1 29.3 70.8 59.9 34.4 49.7 16.2 79.8 84.5 32.2 42.6

Oracle 49.1 27.4 33.8 20.7 42.0 40.8 82.6 66.3 40.2 55.4 18.5 86.1 88.5 33.3 48.9

Table 15: ROUTERRETRIEVER performance with eight gates: AR, NF, SF, FI, HO, MS, SD, QU. Avg is an average performance
over all datasets.

Misc Wiki Bio Science Quora Finance

AR TO MS CL DB NQ FE HO NF TR SD SF QU FI Avg

MSMARCO 37.2 18.3 25.7 16.0 32.7 29.3 68.8 57.6 31.7 41.2 14.6 67.2 84.1 28.8 39.5

Multi-Task 37.5 17.4 23.8 15.5 31.7 26.9 66.9 58.1 34.8 44.5 14.2 68.1 81.0 27.6 39.1

ROUTERRETRIEVER 38.4 17.6 22.7 15.3 32.1 27.4 67.4 59.9 32.7 56.2 14.6 77.3 83.9 31.4 41.7

Best Individual 40.2 19.7 25.6 17.7 36.1 29.3 70.8 59.9 34.4 67.3 16.2 79.8 84.5 32.2 46.9

Oracle 48.6 27.0 35.2 21.5 43.1 41.1 80.3 65.1 41.1 69.1 18.2 84.1 86.4 37.1 49.9

Table 16: ROUTERRETRIEVER performance with eight gates: AR, NF, SF, FI, HO, MS, TR, QU. Avg is an average performance
over all datasets.

Misc Wiki Bio Science Quora Finance

AR TO MS CL DB NQ FE HO NF TR SD SF QU FI Avg

MSMARCO 37.2 18.3 25.7 16.0 32.7 29.3 68.8 57.6 31.7 41.2 14.6 67.2 84.1 28.8 39.5

Multi-Task 35.3 17.6 21.5 15.8 31.0 25.9 66.4 55.3 32.3 41.3 14.5 65.3 82.8 29.3 38.2

ROUTERRETRIEVER 39.5 17.2 22.2 16.0 32.8 27.3 68.1 59.5 33.4 44.3 15.1 76.0 83.6 30.5 40.4

Best Individual 40.2 19.7 22.6 17.7 36.1 28.8 68.9 59.9 34.4 49.7 16.2 79.8 84.5 32.2 42.2

Oracle 48.0 26.8 32.7 21.7 40.6 39.3 80.0 65.5 38.8 56.2 21.0 85.0 89.7 39.2 48.9

Table 17: ROUTERRETRIEVER performance with six gates: AR, NF, SF, FI, HO, QU. Avg is an average performance over all
datasets. Number of total training dataset of ROUTERRETRIEVER, Multi-Task, and MSMARCO-only are the same.

Misc Wiki Bio Science Quora Finance

AR TO MS CL DB NQ FE HO NF TR SD SF QU FI Avg

MSMARCO 37.2 18.3 25.7 16.0 32.7 29.3 68.8 57.6 31.7 41.2 14.6 67.2 84.1 28.8 38.5

Multi-Task 36.9 17.3 22.4 16.3 32.9 26.7 69.0 52.1 32.9 41.4 14.5 69.4 82.0 28.9 38.8

ROUTERRETRIEVER 38.6 17.7 23.0 15.2 33.9 27.6 69.2 59.9 33.4 44.9 14.8 77.6 83.8 30.8 40.7

Best Individual 40.2 19.7 25.6 17.7 36.1 29.3 70.8 59.9 34.4 49.7 16.2 79.8 84.5 32.2 42.6

Oracle 48.5 27.2 34.5 22.3 41.5 40.8 81.0 66.6 39.0 56.4 21.2 85.4 89.9 39.6 49.6

Table 18: ROUTERRETRIEVER performance with seven gates: AR, NF, SF, FI, HO, QU, MS. Avg is an average performance
over all datasets.

on a model’s parametric knowledge, which in turn affects
the extracted embeddings. To test this hypothesis, we exper-
imented to determine whether a model tends to prefer con-
texts that align with its parametric knowledge over those that
conflict with it.

We used a dataset released by Zhou et al. (2023), which
includes instances where each context either aligns with or
conflicts with the model’s parametric knowledge. For each
instance with 5-6 contexts, we evaluated which context the

model chose based on the highest similarity. Interestingly, in
all instances9, the models consistently preferred the context
that aligned with their parametric knowledge. This suggests
that the internal knowledge of the model influences how em-
beddings are extracted, and that having domain knowledge
embedded in the model’s parameters enhances performance.

9We excluded contexts containing extensive length of contexts
(tables), as they tend to introduce bias (Thakur et al. 2021).

