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Abstract

Rising computational demands of modern natural language processing (NLP) sys-
tems have increased the barrier to entry for cutting-edge research while posing
serious environmental concerns. Yet, progress on model efficiency has been im-
peded by practical challenges in model evaluation and comparison. For example,
hardware is challenging to control due to disparate levels of accessibility across
different institutions. Moreover, improvements in metrics such as FLOPs often
fail to translate to progress in real-world applications. In response, we introduce
efficiency Pentathlon, a benchmark for holistic and realistic evaluation of model
efficiency. Pentathlon focuses on inference, which accounts for a majority of the
compute in a model’s lifecycle. It offers a strictly-controlled hardware platform,
and is designed to mirror real-world applications scenarios. It incorporates a suite
of metrics that target different aspects of efficiency, including latency, throughput,
memory overhead, number of parameters, and energy consumption, hence the
name Pentathlon. It also comes with a software library that can be seamlessly
integrated into any codebase and enable evaluation. As a standardized and central-
ized evaluation platform, Pentathlon can drastically reduce the workload to make
fair and reproducible efficiency comparisons. While initially focused on natural
language processing (NLP) models, Pentathlon is designed to allow flexible exten-
sion to other fields. We envision Pentathlon will stimulate algorithmic innovations
in building efficient models, and foster an increased awareness of the social and
environmental implications in the development of future-generation NLP models.

1 Introduction

The remarkable recent progress in artificial intelligence owes much to advances in large-scale deep
learning models (Brown et al., 2020; Chowdhery et al., 2022; Thoppilan et al., 2022, inter alia).
However, their rapidly-increasing computational demands have introduced substantial challenges. The
barrier to entry to cutting-edge research is raised, particularly impacting researchers and practitioners
with fewer resources and exacerbating disparities in the AI research landscape. Moreover, the
escalating energy consumption associated with these computation-intensive models leads to serious
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environmental concerns (Lacoste et al., 2019; Schwartz et al., 2020; Henderson et al., 2020; Strubell
et al., 2020, inter alia).

Therefore, building more efficient models for AI systems has become a pressing challenge, drawing
widespread attention from the community (Reddi et al., 2020; Tay et al., 2020; Treviso et al., 2022;
Liu et al., 2022; Yao et al., 2022; Fu et al., 2023, inter alia). However, a lack of standardized
evaluation protocols makes it challenging to measure the progress in efficiency improvements and
obstructs the efforts in developing more efficient models. In many cases, models are evaluated in
scenarios that hardly reflect the deployment of machine learning models in practice (Henderson et al.,
2020). Moreover, some widely-adopted efficiency metrics such as FLOPs often poorly correlate
with models’ real-world efficiency performance (Dehghani et al., 2022; Fernandez et al., 2023).

…
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Figure 1: By submitting to Pentathlon, practition-
ers can compare their models against all previous
submissions on identical hardware, eliminating the
need to re-implement previous works and substan-
tially reducing the workloads for fair efficiency
comparisons. Models are evaluated in four real-
istic scenarios designed to mirror real-world ap-
plications. Our platform evaluates the submission
across five crucial efficiency metrics, including
throughput, latency, memory overhead, the num-
ber of parameters, and energy consumption, hence
the name Pentathlon.

The issue is exacerbated by several practical
challenges. For instance, hardware is a critical
confounding factor in efficiency comparisons,
but is very challenging to control in practice,
due to disparate levels of hardware accessibil-
ity across institutions. Consequently, this leads
to disconnections between efficiency improve-
ments in research and tangible progress in prac-
tice. There is a pressing need for a standardized
efficiency evaluation framework.

To address these challenges, we present Pen-
tathlon. It is designed to establish a standard-
ized platform for evaluating the inference effi-
ciency of AI models. As shown by Patterson
et al. (2022) and Wu et al. (2022a), inference
accounts for over 60% of energy consumption
in real-world machine learning workloads. Pen-
tathlon aims to provide comprehensive and real-
istic evaluation of efficiency, and offer the com-
munity a platform to make fair comparisons in
a strictly controlled environment. To achieve this, we make several key design choices:

• Controlled hardware environment (§2.1): hosted by a dedicated server, Pentathlon provides a
centralized platform with a strictly controlled hardware environment. This removes the necessity
for practitioners to reproduce previous works on their own hardware for fair comparisons and
allows easy comparisons with models previously evaluated on Pentathlon using identical hard-
ware. Moreover, it allows us to use power monitoring devices to accurately measure the energy
consumption during models’ inference, which was previously impossible.

• Realistic scenarios (§2.2): It evaluates models under various scenarios specifically designed to
mirror real-world deployment contexts, allowing different approaches to batching input instances,
aiming to bridge the gap between research context and practical applications.

• Comprehensive metrics (§2.3): Pentathlon evaluates models with five crucial metrics, including
throughput, latency, memory overhead, the number of parameters, and energy consumption, hence
the name Pentathlon. This provides a more holistic understanding of a model’s efficiency.

• Flexibility (§2.4) Pentathlon is flexible by design and can be seamlessly integrated into any code-
base. Although we focus on natural language processing (NLP) models in this paper, Pentathlon
can be easily extended to other fields.

Pentathlon is ready to accept submissions, helping to reduce the workload of conducting fair efficiency
comparisons: https://github.com/allenai/efficiency-pentathlon. As we demonstrate
in the experiments (§3), Pentathlon can provide fresh insights into existing models. Through our com-
parisons of several established machine translation models, the comprehensive evaluation offered by
Pentathlon highlights the particular effectiveness of quantization in large models. Furthermore, Pen-
tathlon’s energy evaluation component reveals new perspectives on the models’ energy consumption
during inference.

We envision that by offering standardized efficiency evaluation, Pentathlon will stimulate the devel-
opment of more efficient models and foster a deeper awareness of the computational costs of AI
research, and accelerate progress on reducing them.
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2 Efficiency Pentathlon

This section discusses the current challenges in efficiency evaluation and outlines the design choices
we adopted in Pentathlon to effectively address them.

2.1 Controlling the Hardware for Fair Efficiency Comparisons

The hardware stands as a critical confounding factor when comparing efficiency, and can significantly
influence the conclusions of such comparisons. As demonstrated by several recent studies, the trends
in efficiency comparisons can vary substantially when different accelerators are used (Peng et al.,
2021; Kasai et al., 2021a; Wu et al., 2022b; Wang et al., 2020, inter alia). Compounding this issue is
the practical difficulty in controlling for hardware, primarily because access to hardware platforms
often varies among institutions. This is a major obstacle for fair efficiency comparisons. Even with
publicly available implementations, practitioners often need to adapt these to their own hardware
environments to ensure fair comparisons.

Our approach. Pentathlon aims to stimulate algorithmic innovations that can generalize across
different hardware. Therefore we control for hardware while conducting efficiency comparisons
and offer a varied selection of hardware to simulate different use cases. Pentathlon is hosted with a
dedicated in-house server. Participants can submit their models’ code and checkpoints to our server
through an easy-to-use tool that we provide (§2.4). This ensures that all models evaluated using
Pentathlon use an identical hardware environment, guaranteeing fair comparisons. By requiring code
submission Pentathlon helps improve transparency. The specific implementation choices for each
submission, such as data IO and padding, will be thoroughly documented. This is appealing because
it helps disentangle the efficiency gains due to algorithmic innovations from those achieved by better
implementations that can equally benefit all models. Further, a dedicated in-house server allows us to
measure energy consumption, which would otherwise be very challenging to incorporate (§2.3).

The hosting machine of Pentathlon has two NVIDIA RTX 8000 GPUs, two Intel Xeon Ice Lake Gold
6348 28-Core CPUs, and 1TB DDR4 memory. It supports evaluation using GPUs and CPUs, and
CPUs only. We plan to extend Pentathlon to offer a broader selection of hardware in the near future.2

To accurately measure each submission’s efficiency without interference, we have implemented a
scheduler on the server. This ensures that only one inference workload is running at any given time.
In Pentathlon, the efficiency measurement begins when the model has been loaded and is ready for
predictions, excluding the overhead associated with both model and data loading.

2.2 Realistic Evaluation Scenarios Designed to Emulate Real-world Applications

Scenarios Acc. TP. Latency Mem. Energy & CO2 BSZ Online
Fixed batching 3 3 3 3 3 User specified 3
Poisson batching 7 3 3 3 3 Random 3
Single stream 7 7 3 3 3 1 3
Offline 7 3 7 3 3 User specified 7

Table 1: Four evaluation scenarios and the metrics they focus on. Acc.: accuracy, TP.: throughput,
Mem.: memory. In the three online scenarios, Pentathlon interfaces with the submitted model via
standard input/output (stdio), providing inputs and capturing outputs in real-time. Rearrangement of
instance order is prohibited in these scenarios. In the offline scenario, the model is given immediate
access to all evaluation instances via a file, enabling techniques such as sorting by lengths.
NLP systems are deployed across a broad range of practical applications, each with its unique
requirements for efficiency. Consider, for instance, an online search engine. The arrivals of users’
queries are unpredictable, and so is the model’s inference batch size. An AI assistant operating on a
smartphone typically processes one request at a time, while an offline translation system translating an
entire book must use large batch sizes to prioritize maximizing throughput. These practical scenarios
are rarely reflected by conventional efficiency evaluations in the research context, where models are

2We plan to use the NVIDIA Jetson TX2 Module (https://developer.nvidia.com/embedded/
jetson-tx2) to simulate limited-resource settings such as on an automobile, and extend Pentathlon to a
smartphone to evaluate machine learning models designed to run on mobile devices.
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typically assessed with a fixed batch size. Such disparity underscores the pressing need for evaluation
protocols that better reflect real-world deployments.

Our approach. Inspired by Reddi et al. (2020), we include four distinct evaluation scenarios to
provide a comprehensive evaluation of NLP models in a variety of realistic settings:

• Fixed batching. The evaluation data is first randomly shuffled before being grouped into batches
of a user-specified batch-size. This setting is intended to mimic typical research experimental
settings. We defer to the users choosing optimal batch sizes for their models.

• Poisson batching is similar to the fixed batching scenario, but the size of each batch is ran-
domly drawn from a Poisson distribution with a mean of batch-size: batch-sizePois ∼
Pois(batch-size). This setup aims to simulate an online service where the volume of requests is
unpredictable but the average can be estimated.

• Single stream randomly shuffles the evaluation instances and uses a batch size of one, reflecting
the applications processing one request at a time.

• Offline: In this scenario, the model has immediate access to the entire evaluation dataset, enabling
techniques such as sorting the inputs by length or adaptive batching to enhance throughput and
memory efficiency. This scenario reflects large-scale, offline tasks.

These varied evaluation scenarios are designed to highlight the strengths and weaknesses of different
models in diverse deployment contexts.

2.3 A Diverse Set of Metrics for Comprehensive Efficiency Evaluation

AI systems’ efficiency in practical contexts is multifaceted and can hardly be adequately represented
by any single metric. Different use cases prioritize different efficiency aspects. For example, a
model deployed on mobile devices prioritizes energy efficiency, an offline model requires optimal
throughput, while an online service model demands low latency. However, the widely-used metrics
often fail to show strong correlations with these diverse practical aspects of efficiency. Take, for
instance, the number of floating point number operations (FLOPs) a model takes for performing a
workload. It has become a standard efficiency metric partly due to its hardware and implementation-
agnostic nature, highlighting the algorithmic advancements in model efficiency (Schwartz et al.,
2020). Yet recent research has cast doubt on its relevance, showing that it is a poor indicator of many
practical metrics including throughput, latency, and energy consumption (Henderson et al., 2020).
Even for models sharing similar architectures and numbers of parameters, their energy efficiency can
diverge significantly under identical workloads, partly due to specific deep learning operations they
are implemented with (Cao et al., 2021).

This highlights the limitations of conventional evaluation protocols, which risk oversimplifying
efficiency comparisons by attempting to encapsulate performance in a single measure. Instead, we
propose a more comprehensive approach that considers a diverse suite of metrics. It more accurately
reflects the multifaceted nature of efficiency in AI models.

Our approach. Our benchmark’s suite of evaluation metrics includes the following:

• Throughput measures the volume of data a system can process in a unit of time. We measure
throughput with instances/s; for tasks that require generating text, we also consider words/s.

• Latency, in milliseconds. It quantifies the delay between the system receiving a user request and
providing a response. Complementing throughput, it’s especially critical in real-time applications,
such as smartphone-based AI assistants.

• Memory overhead, in GiB, provides insight into a system’s applicability in low-resource settings,
where available memory can be a bottleneck. In resource-abundant settings, lower memory
overhead allows larger batch sizes during inference, improving metrics such as throughput. Our
benchmark measures maximum CPU and GPU (if applicable) memory consumption.

• Energy consumption and carbon footprint. The energy overhead of a system, measured in W·h,
indicates its suitability for battery-powered devices. Combined with carbon intensity data, it can
also assess a model’s carbon footprint in terms of the amount of CO2 emissions, providing an
environmental impact comparison for models deployed in practice. We provide more details about
measuring energy consumption in §2.3.1.

• Model size, measured in the number of parameters, serves as an indicator of models’ storage
overhead, and often correlates with its memory overhead.
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Our approach provides a holistic view of model efficiency, with each focusing on specific application
contexts, allowing practitioners to select efficient methods catered to their applications.

2.3.1 Challenges in Measuring Energy and our Solution

While most of the metrics above can be measured with existing tools, accurately measuring energy
presents unique challenges, primarily due to the lack of established software for this purpose.
Although CUDA offers toolkits to measure GPU power, the power usage of CPUs, DRAM, and disks
is only accessible on specific types hardware and requires root access (Khan et al., 2018).

Many existing methods estimate energy consumption for training using GPU energy alone (Luccioni
et al., 2022; Liang et al., 2022a). However, as we will demonstrate in the experiments, this approach
is not suitable for our purposes for two primary reasons. First, it excludes energy comparisons
of models running on CPUs, which our study aims to explore. Second, inference tasks by nature
entail more frequent data IO interactions, imposing more significant workloads on CPUs, DRAM,
disks, etc., compared to training. In our experiments, they account for more than 60% of energy
consumption—-a significant increase compared to previous estimates for training (Dodge et al., 2022).
Therefore, it is essential to measure not only GPU energy but the total energy consumed by the entire
machine accurately.

To this end, we use an energy-monitoring device to measure the power consumption.3 This data, in
conjunction with the model’s run time, can be used to calculate the model’s energy consumption.
Physically connected to the host machine’s power cables, this device’s sensors provide accurate
real-time power usage data. According to the manufacturer, the error rate is ±1.2%.

The power consumption is calculated by subtracting the host machine’s idling power from the meter
reading during an inference run. To calculate the carbon emissions, we use the carbon intensity data
provided by Schmidt et al. (2022) based on the geographical location and time of the day.

2.4 Ensuring Flexibility in Pentathlon

Requiring code and checkpoint submission imposes additional implementation effort from partic-
ipants, a tradeoff we believe is worthwhile for achieving fair comparisons on a strictly-controlled
hardware platform. Recognizing from past benchmark efforts that this might discourage practitioners
from participating, we have made a concerted effort to ensure that Pentathlon can be easily integrated
into existing code bases and to streamline the submission process.4

Accommodating diverse software frameworks. We aim to encourage wide participation and
ensure our platform is accessible to practitioners accustomed to various software infrastructures.
Therefore, Pentathlon makes no assumption about the submission’s deep learning framework (if a
deep learning model is used at all) or the programming language it’s implemented in. We require
that every submission: (1) Include a GitHub repository containing the code and listing dependencies
(this repository does not need to be public); (2) Interface the model to read inputs from stdin and
write outputs to stdout;5 (3) Implement the necessary tools to download the model checkpoint
for evaluation. We provide detailed instructions and examples to guide practitioners through this
process. Based on our internal testing, learning to integrate Pentathlon into an existing codebase
and submitting it to our server for evaluation takes a participant less than one hour; and an onward
submission takes a single command line. Furthermore, Pentathlon can serve as a standalone tool for
preparing the submission and providing basic efficiency metrics.

In providing abstractions around the evaluation interface, we limit assumptions made around the
underlying system implementation and allow for the installation of user dependencies as needed. This
enables support for a diversity of backend frameworks and runtimes as the user is not constrained
to a single deep learning framework or data format. For example, Pentathlon allows users to use
both research frameworks (e.g., eager execution PyTorch and TensorFlow 2.0) as well as specialized

3We use an emonTx V4 for power consumption measurement: https://shop.openenergymonitor.com/
single-phase-6-channel-energy-monitoring-emontx-v4/.

4This is a lesson that some of the authors learned from the NAACL2022 reproducibility track: https:
//2022.naacl.org/blog/reproducibility-track/

5We provide a Python tool for this stdio interaction. Users can implement their own interfaces if they
decide to use other programming languages.
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inference runtimes (e.g., ONNX Runtime, TVM, and TensorRT). The additional flexibility provided
by this format allows Pentathlon to remain accessible to researchers familiar with a particular
framework, while also enabling the exploration of different means of increasing overall end-to-end
efficiency of the machine learning system that is available in deployment settings. This design allows
users to evaluate efficiency gains from improving different aspects of the overall system, such as
those obtained from optimizing the model architectures or from utilizing faster software frameworks.

Pentathlon builds upon established software developed and maintained by AI2. These tools have
been thoroughly tested by AI2 researchers and engineers, enhancing Pentathlon’s robustness and ease
of use. For example, empowered by Catwalk, Pentathlon supports a diverse set of NLP tasks, and
allows Pentathlon to easily extend to many other tasks and research fields.6

3 Experiments

We use Pentathlon to benchmark several established models for machine translation and text classifi-
cation with the RAFT dataset (Alex et al., 2021). In the interest of space, we refer the readers to the
appendices for the RAFT experiments.

Machine Translation. Improving the efficiency of machine translation (MT) and text generation
models has gained significant momentum. A growing number of recent workshops and shared tasks
have held dedicated efficiency tracks (Birch et al., 2018; Hayashi et al., 2019; Heafield et al., 2020;
Akhbardeh et al., 2021; Kocmi et al., 2022, inter alia). Aligned with this goal, we seek to contribute to
this ongoing effort. To this end, our initial experiments with Pentathlon focus on machine translation.

Dataset and setting. We present results for WMT14 DE-EN (Bojar et al., 2014), a well-
studied dataset that is selected as the testbed in the efficiency tracks of two recent WMT work-
shops (Akhbardeh et al., 2021; Kocmi et al., 2022). Pentathlon already supports many other MT and
text generation datasets, and can be easily extended to more. We focus on DE->EN translation here;
additional results with EN->DE are available in the Appendices.

Balancing the inference wall clock time and accurately measuring the efficiency, we use different
numbers of evaluating instances across the four scenarios. For WMT14 DE-EN:

• Fixed batching uses the full test set of 3,002 instances. It also measures the translation quality
using SacreBLEU (Post, 2018).

• Poisson batching randomly draws 4,000 instances (with replacement) from the test set.
• In the single stream scenario, 1,000 randomly selected test instances are used.
• Differently from others, the offline scenario randomly selects 8,000 instances from the training

data.7 We ensure that the selected instances have an average length matching that of the test set.

Controlling for the random seed, all models are evaluated on the same set of instances in the same
order, and identical batch sizes in the Poisson batching scenario. Preliminary experiments indicate
that the models’ efficiency performance remains consistent across multiple runs. As such, we opt
out of conducting multiple rounds of evaluation. All models are evaluated on one RTX8000 GPU,
and the inference batch sizes for the fixed batching and offline scenarios are tuned to the allowable
maximum for the available GPU hardware.

Models. We benchmark the following publicly-available models covering a wide range of sizes:

• MBART (Tang et al., 2021): a 610M-parameter-sized Transformer model for multilingual trans-
lation. It has two variants, many-to-one (MBART M2O) translates other languages into English,
and many-to-many (M2M) can translate between multiple language pairs. We use the MBART50
variant, originally pre-trained on monolingual corpora in 25 languages, by fine-tuning on parallel
corpora in across 50 languages for direct use as a translation engine.

• M2M100 (Fan et al., 2021): Transformer-based multilingual models for many-to-many translation.
We report on two sizes with 418M and 1.2B parameters respectively. The M2M100 model is

6Catwalk provides a unified interface to a broad range of existing NLP tasks and models. A list of tasks that
are currently supported by Pentathlon can be found at https://github.com/allenai/catwalk.

7In this scenario the models are granted immediate access to all instances and can sort them by length. If
the instances were drawn from the test set, this would result in the artifact that groups duplicates of the same
instance in the same batch, which we aim to avoid.

6
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trained using parallel corpora (e.g., WMT corpora described above) and mined bitext to enable
translation between any two of 100 languages.

• OPUS (Tiedemann & Thottingal, 2020): a bilingual Transformer model with 74M parameters for
DE->EN translation. The model is trained on OPUS bitext corpora (Tiedemann, 2012).

• WMT19-Meta (Ng et al., 2019): a DE->EN Transformer model with 314M parameters.
This system won the WMT19 task on German to English news translation (Barrault et al., 2019).

• WMT21-Meta (Tran et al., 2021): a M2O Transformer model with 4.7B parameters. Unlike
WMT19-Meta, this model is multilingual and trained on data from all languages for the WMT
2021 shared task.Training data is a mixture of parallel corpora, monolingual corpora and mined
bitext. This multilingual system ranked high in several WMT21 news translation tasks (Akhbardeh
et al., 2021). We refer to Tran et al. (2021) for complete details.

We evaluate using PyTorch with both full precision (FP32) and half precision (FP16), to study the
effect of quantization. In our preliminary experiments, we found that employing more aggressive
quantization techniques such as 8-bit and 4-bit quantization using naive methods led to severely
compromised translation quality, with the BLEU score dropping to around 1, effectively resulting in
a failed translation. All models’ implementation and checkpoints are available on Hugging Face.

Results. Figure 2 summarizes the efficiency performance of different models in on the WMT14
DE-EN dataset, along with their translation quality. Overall, models trained for English translation
demonstrated better trade-offs between translation quality and efficiency. Notably, OPUS outperforms
the much larger MBART M2M and M2M100 models in both accuracy and all aspects of efficiency,
and is the most efficient model among all. Although WMT21-Meta, the largest model considered,
provides the highest BLEU score, it takes a substantial hit in efficiency.

Interestingly, despite being more than four times larger, WMT19-Meta achieves efficiency perfor-
mance comparable to OPUS in latency, memory overhead, and energy consumption, and significantly
outperforms it in terms of BLEU. However, it falls short of OPUS in throughput. This observation
confirms that relying on a single efficiency metric risks oversimplifying the complex performance
landscape of efficiency in practical applications.

With ONNX, the models achieve over 20% improvements in latency and throughput in the single-
stream scenario, accompanied by a significant reduction in memory and energy overhead. However,
less efficiency improvement is observed in other scenarios with larger batch sizes.

Larger models benefit more from FP16 quantization. By comparing Figures 2a and 2b, we
observe that FP16 quantization improves all models’ efficiency performance (except #Params.),
particularly memory overhead. Larger models appear to benefit more from quantization. As shown
in Figures 2c and 2d, while OPUS experiences minimal efficiency gains from quantization apart
from increased throughput, WMT21-Meta’s efficiency dramatically improves with FP16 quantization,
nearly doubling throughput and reducing latency, memory overhead, and energy consumption by half
or more. These results highlight the promise of advancing quantization techniques for larger models
in order to improve the trade-off between accuracy and efficiency.

In single-GPU inference, the GPU accounts for only a minor portion of the energy consump-
tion. This is demonstrated by Figure 3. This experiment uses a single RTX8000 GPU with a
maximum power of 260W. We note that the GPU rarely operates at full power, implying that GPU
hours, a metric commonly used to gauge training computational overhead (Henderson et al., 2020;
Kasai et al., 2021b), is unsuitable for estimating inference GPU energy. Even during the most
GPU-intensive runs by the WMT21-Meta model, where it does operate at full capacity, the GPU
only accounts for one third of the total machine power. This observation diverges from previous
findings on training, where GPUs are estimated to constitute around 70% of the energy usage (Dodge
et al., 2022). We attribute the difference to the increased memory and disk IO demands during
inference, coupled with lower GPU utilization and increased idling time due to smaller compute
kernels during inference This disparity suggests that efficiency conclusions drawn from training need
careful examination when applied to inference. Interestingly, we observe a correlation between higher
GPU power and higher power utilization by other components. We conjecture that this is at least
partially due to the increased fan activity needed for cooling.
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(c) OPUS, FP32 vs. FP16.
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(d) WMT21-Meta, FP32 vs. FP16.

Figure 2: Performance of various models on the WMT14 DE-EN, represented in terms of BLEU
scores and a range of efficiency metrics. To more accurately reflect real-world applications, the
figures include throughput metrics from the offline scenario, latency and GPU memory metrics from
the single stream scenario, and energy metrics from the fixed batching scenario. For all metrics, outer
rings indicate better performance. #Params is presented on a logarithmic scale.
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(b) Offline.

Figure 3: Power consumption in Watts across different model inference runs in the single stream (3a)
and offline (3b) scenarios. Purple bars indicate the power consumed by the GPU, while the light blue
bars represent the power consumption of all other system components, excluding the GPU. The white
numbers denote the absolute power consumption values in Watts, while the percentage numbers atop
the bars provide the proportion of power consumption that is accounted for by the GPU.
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4 Related Work

There is growing interest in putting efficiency in NLP benchmarks. Dynabench (Kiela et al., 2021)
and Dynaboard (Ma et al., 2021) concentrate on dynamic dataset creation and model assessment,
incorporating efficiency metrics such as throughput and memory, alongside fairness and robustness
HELM (Liang et al., 2022b) evaluates language models with seven metrics including efficiency.
Though training efficiency in HELM covers energy, carbon, and wallclock time, the inference
efficiency in this benchmark only measures inference runtime, and the energy and carbon footprint
are only roughly estimated. HULK (Zhou et al., 2021) evaluates energy efficiency as a proxy of
time and cost, while Pentathlon evaluates multiple different efficiency metrics in a realistic way.
Long-Range Arena (Tay et al., 2021) builds a set of synthesized tasks to evaluate the long-range
capabilities of NLP models in terms of generalization and computational efficiency including speed
and memory footprint. Another line of work has studied application- or task-specific efficiency such
as trade-offs between accuracy and energy consumption for long context NLP models (Ang et al.,
2022), inference energy competition for models on SuperGLUE (Wang & Wolf, 2020) or storage
efficiency for open domain question answering (Min et al., 2021). Most related to Pentathlon, MLPerf
targets inference efficiency across various real-world scenarios (Reddi et al., 2020; Banbury et al.;
Mattson et al., 2020). While MLPerf aims to stimulate building more efficient hardware platforms,
Pentathlon incentivizes algorithmic innovations, controlling the hardware. Hosted on an in-house
machine, Pentathlon can accurately measure inference energy consumption, which was impossible
for previous benchmark efforts.

5 Conclusions

We present Pentathlon, a benchmark for holistic and realistic evaluation of inference efficiency.
Pentathlon targets multiple aspects of efficiency including latency, throughput, memory overhead,
number of parameters, and energy consumption, on a strictly-controlled hardware platform. Inte-
grating evaluation with Pentathlon is seamless and can drastically reduce the workload to make fair
and reproducible efficiency comparisons. Pentathlon offers both testing in real-world application
scenarios and a standardized platform for comparison between any two submissions. We establish
this tool for NLP models but offer flexible extensions to additional tasks and scenarios. We envision
Pentathlon to provide a new lens on testing algorithmic innovations by lowering the barrier to entry
for evaluating efficiency and characterizing environmental impact of future models.
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Amine Saboni, JPW, MinervaBooks, Hervé M., Connor McCarthy, Erik Johannes Husom, Jake
Tae, Sébastien Tourbier, and kraktus. mlco2/codecarbon: v2.1.1, May 2022. URL https:
//doi.org/10.5281/zenodo.6537300.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54–63, 2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In AAAI Conference on Artificial Intelligence, 2020.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu,
and Angela Fan. Multilingual translation from denoising pre-training. In Findings of the As-
sociation for Computational Linguistics: ACL-IJCNLP 2021, pp. 3450–3466, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.304. URL
https://aclanthology.org/2021.findings-acl.304.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv:
2009.06732, 2020.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In Proc. of ICLR, 2021.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi
Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S. Meier-Hellstern,
Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben
Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra
Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise
Aguera-Arcas, Claire Cui, Marian Croak, Ed H. Chi, and Quoc Le. Lamda: Language models
for dialog applications. CoRR, abs/2201.08239, 2022. URL https://arxiv.org/abs/2201.
08239.

Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and Evaluation (LREC’12), pp. 2214–2218,
Istanbul, Turkey, May 2012. European Language Resources Association (ELRA). URL http:
//www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf.

Jörg Tiedemann and Santhosh Thottingal. OPUS-MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Conferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal, 2020.

Chau Tran, Shruti Bhosale, James Cross, Philipp Koehn, Sergey Edunov, and Angela Fan. Facebook
ai’s wmt21 news translation task submission. In Proc. of WMT, 2021.

13

http://dx.doi.org/10.1109/ISCA45697.2020.00045
http://dx.doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.5281/zenodo.6537300
https://doi.org/10.5281/zenodo.6537300
https://aclanthology.org/2021.findings-acl.304
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf


Marcos Treviso, Ji-Ung Lee, Tianchu Ji, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael
Hassid, Kenneth Heafield, Sara Hooker, Colin Raffel, Pedro H. Martins, André F. T. Martins,
Jessica Zosa Forde, Peter Milder, Edwin Simpson, Noam Slonim, Jesse Dodge, Emma Strubell,
Niranjan Balasubramanian, Leon Derczynski, Iryna Gurevych, and Roy Schwartz. Efficient
methods for natural language processing: A survey, 2022.

Alex Wang and Thomas Wolf. Overview of the SustaiNLP 2020 shared task. In Proceedings of
SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pp. 174–178, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.sustainlp-1.24.
URL https://aclanthology.org/2020.sustainlp-1.24.

Yu Wang, Gu-Yeon Wei, and David Brooks. A systematic methodology for analysis of deep learning
hardware and software platforms. Proceedings of Machine Learning and Systems, 2:30–43, 2020.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, June
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https:
//aclanthology.org/N18-1101.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta,
Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee,
Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat,
and Kim Hazelwood. Sustainable ai: Environmental implications, challenges and opportunities. In
MLSys, 2022a.

Zhaofeng Wu, Hao Peng, Nikolaos Pappas, and Noah A. Smith. Modeling context with linear
attention for scalable document-level translation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pp. 6931–6939, Abu Dhabi, United Arab Emirates, December
2022b. Association for Computational Linguistics. URL https://aclanthology.org/2022.
findings-emnlp.515.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. ArXiv,
abs/2206.01861, 2022.

Yanli Zhao, Rohan Varma, Chien-Chin Huang, Shen Li, Min Xu, and Alban Desmaison. Introducing
pytorch fully sharded data parallel (FSDP) api, 2021. URL https://pytorch.org/blog/
introducing-pytorch-fully-sharded-data-parallel-api/.

Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin, and William Yang Wang. HULK: An energy efficiency
benchmark platform for responsible natural language processing. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: System
Demonstrations, pp. 329–336, Online, April 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.eacl-demos.39. URL https://aclanthology.org/2021.eacl-demos.39.

14

https://aclanthology.org/2020.sustainlp-1.24
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/2022.findings-emnlp.515
https://aclanthology.org/2022.findings-emnlp.515
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://aclanthology.org/2021.eacl-demos.39


Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] As mentioned in Section 2.1,
our current server for Pentathlon houses two Nvidia RTX 8000 GPUs. We plan to
support other hardware platforms such as the edge Nvidia Jetson TX2 in the near future.
Our current GPUs are based on the previous generation of Turing microarchitecture,
which might not fully utilize the state-of-the-art GPU technology and CUDA software
improvements. To address this, we have plans to upgrade our server with more advanced
GPUs in the near future.
Our requirements for submission of code and checkpoints naturally prohibit the evalua-
tion of large language models that are not publicly available, or any large model that
our hardware is not capable of running. In addition to the plan to upgrade our hardware,
the insights learned from Pentathlon could help better quantify hardware’s impact on
efficiency and possibly extrapolate the findings to the models we are currently unable
to evaluate.
Finally, while Pentathlon focuses on evaluating inference efficiency, we acknowledge
the challenges and complexity of properly evaluating training efficiency. Our hope is
that the insights and methodologies developed through Pentathlon can also contribute
to improved tools and strategies for evaluating and comparing the training efficiency of
large models in the future.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] The goal
of this work is to mitigate the negative societal impacts of ML due to the increasing
computational demands of ML models, by providing a better platform for benchmarking
model efficiency. We do not anticipate any direct negative societal impacts. There may
be potential indirect impacts if our platform facilitates drastic improvements in ML
model efficiency, leading to e.g. (a) increased overall emissions due to increased ease
of use/access (i.e. Jevons paradox) or (b) increased access to ML models by bad actors,
who would have otherwise been limited by computational resources. In the case of (b),
we hope that any increased access facilitated by our work is equally applicable to good
actors, balancing the effect.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The URL to
code is provided in Section 1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We use the standard data splits for evaluation with the WMT14
DE-EN dataset. We do not perform model training in this work.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We do not perform training, so there are no averages over
random seeds. As discussed in Section 3, we found in preliminary experiments that
there was little variation in efficiency measures across runs, so we run each evaluation
setting only once.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Reported or computable from
results reported in Section 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 3.

15



(b) Did you mention the license of the assets? [No] The license of the WMT14 DE-EN
dataset is not listed on the dataset website. However, data is sourced from the EuroParl
corpus with no listed copyright restrictions.8

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We use WMT14 DE-EN, a popular long-standing corpus of
parallel translation data. The curators of this dataset do not report this information.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We use WMT14 DE-EN, a popular long-
standing corpus of parallel translation data. The curators of this dataset do not report
this information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

8For more information see the WMT-14 Task https://www.statmt.org/wmt14/translation-task.
html and the EuroParl Corpus https://www.statmt.org/europarl/
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Appendices
A Text Classification with RAFT

RAFT is a collection of 11 datasets that focus on few-shot text classification in real-world settings.
Here we focus on the ADE Corpus V2 (ADE) portion, aiming to classify sentences derived from
medical reports as related or unrelated to adverse drug effects. Several baseline models, provided by
the authors, were evaluated for efficiency, including:

• AdaBoost (Freund & Schapire, 1995): a strong non-neural classifier based on decision trees.
• BART Zero Shot MNLI: BART (Lewis et al., 2020) finetuned on the MNLI dataset (Williams

et al., 2018). It is used as a zero-shot classifier.
• GPT-2 (Radford et al., 2018): used as a few-shot classifier with 25 in-context training demonstra-

tions and task-specific instructions.

The implementation for all models is attributed to Alex et al. (2021).9 At the time of writing, RAFT
has not released the gold labels of the test split, and therefore we report the F1 performance by Alex
et al. (2021).
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Figure 4: Models’ efficiency and accu-
racy performance on RAFT test data. F1
numbers are due to Alex et al. (2021).

Results. Figure 4 provides a comparison of the above
models with a majority-class baseline (Maj.). AdaBoost, a
non-neural model, emerges as a strong competitor in terms
of the accuracy-efficiency trade-off. Interestingly, GPT-2,
despite having fewer parameters, lags behind BART in
terms of throughput, latency, and energy consumption. We
believe that this could be due to the in-context few-shot
examples, which lead to significantly longer inputs for
GPT-2 compared to BART. Nonetheless, GPT-2 manages
to achieve the highest F1 score in this experiment.

B Additional
Experiments with Machine Translation

All models’ implementation and checkpoints are available on Hugging Face, with the following
identifiers:

• MBART50: facebook/mbart-large-50-many-to-{many, one}-mmt;

• M2M100: facebook/m2m100_{418M, 1.2B};

• OPUS: Helsinki-NLP/opus-mt-de-en;

• WMT19-Meta: facebook/wmt19-de-en;

• WMT21-Meta: facebook/wmt21-dense-24-wide-en-x.

Additional FP32 vs. FP16 comparisons. Figure 5 provides an additional set of comparisons
between FP32 and FP16 across various models on WMT14 DE-EN, complementing the results
presented in Section 3. The general trends mirror those observed earlier, with larger models benefiting
more in terms of efficiency from quantization compared to smaller ones.

ONNX improves throughput, latency, and energy overhead, at the cost of increased GPU mem-
ory overhead. Pentathlon makes little assumptions on the models’ implementation and backend
runtime, and allows users to use both eager-execution research frameworks like PyTorch as well
as specialized inference runtimes like Open Neural Network Exchange (ONNX). Here we study
ONNX’s impact on the model’s efficiency.

ONNX is a cross-platform static runtime that uses pre-compiled computational graphs. It allows
for aggressive, global ahead-of-time compiler optimizations, and can bring substantial latency and
throughput improvements in inference settings with small batch size. The readers are referred

9https://github.com/oughtinc/raft-baselines
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to https://onnx.ai/ for more details. As of now, ONNX supports conversion from models
implemented with PyTorch, Tensorflow, and JAX, enabling us to make direct comparisons between
PyTorch implementation and ONNX in our machine translation experiments with WMT14 DE-EN.

As shown in Figure 7, when comparing five different models in a single-stream scenario using
PyTorch and ONNX runtime, ONNX delivers substantial improvements in throughput, latency, and
energy overhead, especially for larger models. However, this comes with an increase in GPU memory
consumption, which is likely due to the storage of pre-compiled computational graphs on the GPU.
WMT19 Meta and WMT21, which utilize the Fully Sharded Data Parallel technique (FSDP; Zhao
et al., 2021), are excluded from this experiment due to compatibility challenges with ONNX and
FSDP.

Our preliminary experiments find that ONNX brings marginal efficiency improvements in other
scenarios that use larger batch sizes, which is consistent with the observation by Fernandez et al.
(2023).

Results on WMT14 EN->DE.

Figure 6 provides a summary of the efficiency performance of various models on the WMT14 English-
to-German (EN->DE) translation task. The results are shown for both FP32 and FP16 models. The
observed trends align with those discussed in Section 3.
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(a) MBART M2O.
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(b) MBART M2M.
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(c) M2M100 418M.
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(d) M2M100 1.2B.
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(e) WMT19 Meta.

Figure 5: Additional results of various models on the WMT14 DE-EN using FP32 (red) and FP16
(blue). Similarly to Figure 2, the throughput metrics are from the offline scenario, latency and GPU
memory metrics from the single stream scenario, and energy metrics from the fixed batching scenario.
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(a) FP32.
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(b) FP16

Figure 6: Performance of various models on the WMT14 EN-DE. Following Figure 2, the figures
include throughput metrics from the offline scenario, latency and GPU memory metrics from the
single stream scenario, and energy metrics from the fixed batching scenario. For all metrics, outer
rings indicate better performance. #Params is presented on a logarithmic scale.
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(a) MBART M2O.
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(b) MBART M2M.
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(c) M2M100 418M.
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(d) M2M100 1.2B.
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(e) OPUS.

Figure 7: Accuracy and efficiency performance comparisons of five different models while using
PyTorch (red) and ONNX (blue) runtime. WMT19 Meta and WMT21 Meta rely on the Fully Sharded
Data Parallel (FSDP; Zhao et al., 2021) in their implementation, which complicates their conversions
to ONNX, and are therefore not included in this figure. All efficiency metrics are measured in the
single-stream scenario; in preliminary experiments, we observe that the efficiency gains from ONNX
are marginal in other scenarios, as expected.
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