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Abstract

Language models have become a critical technology to tackling a wide range of
natural language processing tasks, yet many details about how the best-performing
language models were developed are not reported. In particular, information
about their pretraining corpora is seldom discussed: commercial language models
rarely provide any information about their data; even open models rarely release
datasets they are trained on, or an exact recipe to reproduce them. As a result,
it is challenging to conduct certain threads of language modeling research, such
as understanding how training data impacts model capabilities and shapes their
limitations. To facilitate open research on language model pretraining, we release
Dolma, a three trillion tokens English corpus, built from a diverse mixture of
web content, scientific papers, code, public-domain books, social media, and
encyclopedic materials. In addition, we open source our data curation toolkit to
enable further experimentation and reproduction of our work. In this report, we
document Dolma, including its design principles, details about its construction, and
a summary of its contents. We interleave this report with analyses and experimental
results from training language models on intermediate states of Dolma to share
what we have learned about important data curation practices, including the role
of content or quality filters, deduplication, and multi-source mixing. Dolma has
been used to train OLMo, a state-of-the-art, open language model and framework
designed to build and study the science of language modeling.

Dataset v. 1.6 huggingface.co/datasets/allenai/dolma

Toolkit v. 1.0 github.com/allenai/dolma

♥Core contributors. See Appendix B for full author contributions.
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Source Doc Type UTF-8 bytes
(GB)

Documents
(millions)

Unicode
words

(billions)

Llama
tokens

(billions)

Common Crawl � web pages 9,022 3,370 1,775 2,281
The Stack Ð code 1,043 210 260 411
C4 � web pages 790 364 153 198
Reddit Ü social media 339 377 72 89
PeS2o � STEM papers 268 38.8 50 70
Project Gutenberg [ books 20.4 0.056 4.0 6.0
Wikipedia, Wikibooks ] encyclopedic 16.2 6.2 3.7 4.3

Total 11,519 4,367 2,318 3,059

Table 1: The Dolma corpus at-a-glance. It consists of three trillion tokens sampled from a diverse
set of domains sourced from approximately 200 TB of raw text. It has been extensively cleaned for
language model pretraining use.

1 Introduction
Language models are now central to tackling myriad natural language processing tasks, including few-
shot learning, summarization, question answering and more. Increasingly, the most powerful language
models are built by a few organizations who withhold most model development details (Anthropic,
2023; OpenAI, 2023; Anil et al., 2023; Gemini Team et al., 2023). In particular, the composition
of language model pretraining data is often vaguely stated, even in cases where the model itself is
released for public use, such as LLaMA 2 (Touvron et al., 2023b). This hinders understanding of the
effects of pretraining corpus composition on model capabilities and limitations, and therefore of the
models themselves, with impacts on scientific progress as well as on the public who interfaces with
these models. We instead target openness and transparency, releasing and documenting a dataset of
three trillion tokens alongside tools to reproduce, scrutinize and expand on our work.

Our aim is to allow for more individuals and organizations to participate in language model research
and development.

• Data transparency helps developers and users of applications that rely on language models to make
more informed decisions (Gebru et al., 2021). For example, increased prevalence of documents
or terms in language model pretraining data has been linked to better performance on related
tasks (Razeghi et al., 2022; Kandpal et al., 2023), and social biases in pretraining data (Feng et al.,
2023; Navigli et al., 2023; Seshadri et al., 2023) may necessitate additional consideration in some
domains.

• Open pretraining data is necessary for analysis via empirical studies exploring how data compo-
sition influences model behavior, allowing the modeling community to interrogate and improve
current data curation practices (Longpre et al., 2023; Gao, 2021; Elazar et al., 2023). Examples of
this research include memorization (Carlini et al., 2022b; Chang et al., 2023), deduplication (Lee
et al., 2022), adversarial attacks (Wallace et al., 2021), benchmark contamination (Magar and
Schwartz, 2022), and training data attribution (Hammoudeh and Lowd, 2022; Grosse et al., 2023)

• Access to data is required for successful development of open language models. For example,
newer language models may offer functionality such as attribution of generations to pretraining
data (Borgeaud et al., 2022).

To support broader participation and inquiry in these lines of research, we present Data for Open
Language Models’ Appetite (Dolma), an open corpus of three trillion tokens designed to support
language model pretraining research. Pretraining data mixes are often motivated by a desire to capture
so-called “general-purpose” English. We source much of our data from sources similar to those present
in past work, including a mix of web text from Common Crawl, scientific research from Semantic
Scholar, code from GitHub, public domain books, social media posts from Reddit, and encyclopedic
materials from Wikipedia. We compare our dataset to a variety of popular pretraining corpora that are
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available publicly, and find that Dolma offers a larger pool of tokens at comparable quality and with
equally diverse data composition. Dolma has been already used to pretrain OLMo (Groeneveld et al.,
2024), a family of state-of-the-art models designed to facilitate the science of language modeling.

In summary, our contributions are two-fold:

• We release the Dolma Corpus, a diverse, multi-source collection of 3T tokens across 5B docu-
ments acquired from 7 different data sources that are (i) commonly seen in large-scale language
model pretraining and (ii) accessible to the general public. Table 1 provides a high-level overview
of the amount of data from each source.

• We open source the Dolma Toolkit, a high-performance, portable tool designed to efficiently curate
large datasets for language model pre-training. Through this toolkit, practitioners can reproduce
our curation effort and develop their own data curation pipelines.

The remainder of this manuscript is organized as follows: we first describe the desiderata and design
principles that guided the creation of Dolma (§2). We then document the methods applied to process
the raw text (§3), including filters for language, “quality,” content filtering, and deduplication. Further
processing was required to prepare Dolma for use as a pretraining corpus (§4), including bench-
mark decontamination and selecting a mixture rate. Throughout, we conduct ablation experiments,
measuring domain fit through perplexity tracking and downstream performance on a set of twelve
question-answering, common sense, and reasoning tasks. We conclude by discussing the process of
releasing Dolma (§5).

2 Dolma Design Goals

To support large-scale LM pretraining research, we set four design requirements around openness,
consistency with prior work, size, and risk mitigation. We discuss each in turn.

Dolma’s curation should be consistent with prior language model pretraining recipes. By
matching data sources and methods used to create other language modeling corpora, to the extent
they are known, we enable the broader research community to use our corpus and resulting model
artifacts to study (and scrutinize) language models being developed today, even those developed
behind closed doors. In this reproduction effort, we follow established practices (i.e., use data
sources and techniques for preprocessing and filtering content that appears frequently across language
modeling efforts) to the extent they are known, and defer to analysis, experimentation and educated
guesses when best practice isn’t known or implementations differ in subtle ways.1 Notably, this
also means scoping Dolma to English-only text to better leverage known curation practices and
maximize generalizability of scientific work on Dolma to existing language models.2 To illustrate
the open-ended nature of this reproduction effort, we provide a detailed summary of known (and
unknown) data curation practices for some of the largest proprietary (e.g., GPT-4 (OpenAI, 2023),
PaLM 2 (Anil et al., 2023), Claude (Anthropic, 2023)) as well as open (e.g., OPT (Zhang, 2022),
LLaMA (Touvron et al., 2023a), Llama 2 (Touvron et al., 2023b)) language models in Appendix §C.

Dolma should support training of large models. Hoffmann et al. (2022) suggested that one
can train compute-optimal models by maintaining a fixed ratio between language model size (in
parameters) and minimum number of training tokens. Recent models that follow these “scaling
laws,” such as LLaMA 2 (Touvron et al., 2023b), appear to show there is still room for performance
improvement by increasing the number of training tokens.3 As this is an active area of research,
we aim for a sufficiently large corpus to allow further study of the relationship between model and
dataset size—2-3T tokens.

1We note this reproduction effort does not seek to replicate specific language model pretraining data
implementations. Instead, we reproduce a range of data curation themes.

2Recognizing that this focus reinforces the assumption of English as the “default” language, we hope to
expand Dolma to more languages in the future. We release our data curation tools to support such efforts.

3See Figure 5 in Touvron et al. (2023b), in which loss has not converged even at 2T tokens.
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Dolma should contribute to open corpora. Lack of access to pretraining corpora alongside
corresponding language models has been a major obstacle for the broader research community. Very
few open models out of the hundreds released in the recent years are released alongside their training
data: T5 and C4 (Raffel et al., 2020), BLOOM and ROOTS (Leong et al., 2022; Piktus et al., 2023),
GPT-J/GPT-NeoX/Pythia and Pile (Wang and Komatsuzaki, 2021; Black et al., 2022; Biderman
et al., 2023; Gao et al., 2020), INCITE and RedPajama v1 (Together Computer, 2023b,c). However,
limitations in these prior corpora have motivated need for a new dataset such as Dolma:

• C4 (Raffel et al., 2020), Pile (Gao et al., 2020), and Falcon (Almazrouei et al., 2023) are high-
quality datasets with demonstrated use in training language models, but are unfortunately
limited in scale. ROOTS (Piktus et al., 2023) is large and diverse but given its multilingual
focus, its English-only portion is also too small to train English-only models.

• RedPajama v2 (Together Computer, 2023a) meet our criteria of scale but don’t reflect
representative distributions over sources of content commonly seen in curating the largest
language models (e.g., scientific papers, code).

• RedPajama v1 (Together Computer, 2023c) is most similar to our effort and a source
of inspiration when designing Dolma. While RedPajama v1 was a reproduction of the
LLaMA (Touvron et al., 2023a) training data, we have a broader reproduction target which
required diving into data sources that RedPajama v1 did not pursue, including larger collec-
tions of scientific papers and conversational forums like Reddit.

In all, we expand on these works by creating the largest curated open pretraining corpus to
date. We define openness to mean (i) sharing the data itself, which in turn informs our choice of
data sources, and (ii) documenting the process used to curate it, including decisions made with
justifications, and open-source implementations to allow others to reproduce our work and create new
corpora. The resulting open-source high-performance toolkit enables researchers to implement their
own data pipelines to either further refine Dolma or process their own datasets.

Dolma’s curation should minimize risk of harm to individuals Curating a pretraining corpus
may introduce risk to individuals, either by facilitating access to information that is present in the
corpus, or by enabling training of harmful models. To minimize these risk while meeting our stated
goals, we engaged with legal and ethics experts from within our organizations early in the project
and evaluated data design decisions based on their feedback on a case-by-case basis. Broadly, we
follow accepted practices when available (e.g., masking of certain personal identifiable information),
and take a measured approach when diverging opinions exist in the literature (e.g., most effective
approach to identify and remove toxic content). Further, we provide tools to request data removal4

As the landscape around data and AI is evolving, we do not claim that our decisions are correct.
Nevertheless, we do believe in compromising on desired research artifact properties like model
reproducibility, performance, and extensibility in cases of significant harm to individuals.

Even with these design goals to help scope our effort, there remain myriad decisions we must make
when curating Dolma. Without a single clear recipe to follow from prior work, we rely on two
principles to guide our decisions:

(i) Use an evaluation suite, wisely. As part of the OLMo project Groeneveld et al. (2024), we
developed an evaluation suite (Groeneveld et al., 2023; details in Appendix D) to offer guidance
during pretraining across a range of capabilities and tasks. Whenever possible, data decisions are
made to improve its metrics. However, our evaluation suite is not perfect. For example, it cannot
fully measure the effect of adding data sources that benefit models after instruction tuning5. In
these cases, we make sure that any one decision does not drastically decrease performance of any
of the tasks in the suite.

(ii) Favor decisions that advance research directions of interest to our organization. Where
the above principles do not offer guidance, we seek to build a corpus that will be most useful
in research at academic or non-profit organizations like those of the authors. This does not

4Available at the following URL: forms.gle/FzpUXLJhE57JLJ3f8
5For example, the effect of adding code to pretraining data cannot be fully measured until models are able to

generate executable code. However, such capability is typically observed after models are further finetuned to
follow instructions (Muennighoff et al., 2023a).
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necessarily mean maximizing benchmark performance; many desirable dataset interventions are
at odds with each other6.

3 Creating Dolma
Curation of pretraining data often requires defining complex pipelines that transform raw data
from multiple sources into a single collection of cleaned, plain text documents. Such a pipeline
should support � acquisition of content from diverse sources (e.g., crawling, API ingestion, bulk
processing), data Zcleanup through the use of filtering heuristics and content classifiers, and ç
mixing into a final dataset (e.g., deduplication, up/down-sampling of sources).

In curating Dolma, we create a high-performance toolkit to facilitate efficient processing on hundreds
of terabytes of text content. The toolkit is designed for high portability: it can run any platform
from consumer hardware (thus facilitating the development of new pipelines) to a distributed cluster
environment (ideal for processing large datasets like Dolma). Through the curation of Dolma, we
implemented commonly used Zcleanup and ç mixing steps that can be used to reproduce and
curate similar datasets to Gopher, C4, and OpenWebText.

Using our toolkit, we develop and combine four kinds of data transformations that match Dolma
desiderata we introduced in §2:

• Z Language filtering. To create our English-only corpus, we rely on scalable tools for automated
language identification. Identification is performed using fastText’s (Joulin et al., 2016a) language
ID model. Depending on the length of documents in each source, we either process the entire text
at once or average the score of paragraphs. Documents with a sufficiently low English score are
removed.7 We do not perform any language identification on datasets that are distributed already
pre-filtered to English-only documents.8 We note that language filtering is never perfect, and
multilingual data is never completely removed from pretraining corpora (Blevins and Zettlemoyer,
2022).

• Z Quality filtering. It is common practice to remove text that is considered “low quality,”
though there is no broad consensus about what this means or how best to operationalize this with
automated tools.9 For web sources, we follow recommendations in Gopher (Rae et al., 2021) and
Falcon (Almazrouei et al., 2023) which suggest avoiding model-based quality filters like those used
for LLaMA (Touvron et al., 2023a) and GPT-3 (Brown et al., 2020). Instead, we reimplemented
and applied heuristics used in C4 (Raffel et al., 2020) and Gopher (Rae et al., 2021) that they
used for processing Common Crawl. For other sources, we refer the reader to their corresponding
sections as each required bespoke quality filtering strategies.

• Z Content filtering. Beside removal of low quality, unnatural content, it is standard practice
to filter toxic content from pretraining data to reduce risk of toxic generation (Anil et al., 2023;
Rae et al., 2021; Thoppilan et al., 2022; Hoffmann et al., 2022; Longpre et al., 2023). We follow
this practice and implement a mix of rules- and classifier-based toxicity filtering techniques
depending on the source.10. Large pretraining corpora have also be shown to include personal
identifiable information (PII; Elazar et al., 2023), which models are able to reproduce at inference
6For example, we would like Dolma to support future investigations of the effect of pretraining on code;

while our current evaluation suite is not properly designed to fully assess the impact of code data, we nevertheless
include code in our corpus, to further research on this topic. Similarly, while previous research has suggested
that removing

7Keeping a low threshold can help mitigate inherent biases (Blodgett et al., 2016) that language detectors have
against English dialects spoken by minoritized groups. Scores used for each source are reported in subsequent
sections.

8These datasets may have been filtered to English content using other classifiers and thresholds.
9The term “quality filter,” while widely used in literature, does not appropriately describe the outcome of

filtering a dataset. Quality might be perceived as a comment on the informativeness, comprehensiveness, or
other characteristics valued by humans. However, the filters used in Dolma and other language models efforts
select text according to criteria that are inherently ideological (Gururangan et al., 2022).

10Like in the case of “quality”, there is no single definition for “toxicity”; rather, specific definitions vary
depending on task (Vidgen and Derczynski, 2020) and dataset curators’ social identities (Santy et al., 2023);
annotators’ beliefs also influence toxic language detection (Sap et al., 2021) Using models to identify toxic
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time (Carlini et al., 2022a; Chen et al., 2023b). In Dolma, we identify content for removal through
a fastText classifier trained on Jigsaw Toxic Comments (cjadams et al., 2017) and a series of regular
expressions targeting PII categories from Subramani et al. (2023); Elazar et al. (2023).

• ç Deduplication. Deduplication of pretraining corpora has been shown to be an effective technique
to improve token efficiency during model training (Lee et al., 2022; Abbas et al., 2023; Tirumala
et al., 2023). In preparing Dolma, we use a combination of URL, document, and paragraph-level
deduplication. We achieve linear-time deduplication through the use of a Bloom filters (Bloom,
1970). We perform this deduplication across files from the same subset (e.g., deduplicate all
documents in the web subset), but not across sources (e.g., do not check if any web document also
appears in the code subset).

In the reminder of this section, we provide a detailed explanation of how the steps above are
implemented for each data source shown in Table 1. To support our decisions, we leverage two
tools. First, we inspect the output of our pipelines using the WIMBD tools (Elazar et al., 2023). This
approach allows us to efficiently spot issues without having to train any models.

Then, we conduct data ablations using a 1 billion parameter decoder-only model trained up to
150 billion tokens; we provide a detailed description of our experimental setup in §D.1. Through
these ablations, we can compare the outcome of our data pipelines on our evaluation suite. The
evaluation suite is comprised of 18 domains on which we measure perplexity to estimate language fit
(Magnusson et al., 2023; described in §D.2), as well as 7 downstream tasks on which we evaluate
question answering, reasoning, and commonsense capabilities of resulting models (described in §D.3).
For the reminder of this section, we present a subset of results on the evaluation suite; we include all
our experimental results in Appendix K. When making decisions, we prioritize interventions that
optimize metrics in downstream tasks over language fit.

3.1 � Web Pipeline

://foo

://foo

://bar

Deduplication
by URL

Language 
Filtering

Quality Filters
C4 (subset) + Gopher rules

Content Filters
Toxic content, PII

Deduplication
on text overlap

Figure 1: Overview of the web processing pipeline in Dolma.

The web subset of Dolma was derived from Common Crawl.11 Common Crawl is a collection of
over 250 billion pages that were crawled since 2007. It is organized in snapshots, each correspond to
a full crawl over its seed URLs. In November 2023, there were 89 snapshots. Dolma was curated
from 25 snapshots.12 collected between 2020-05 to 2023-06.

3.1.1 � Data Acquisition and Z Language Filtering

Following data curation practices used to develop LLaMA (Touvron et al., 2023a), our web pipeline
leverages CCNet (Wenzek et al., 2020b) to perform language filtering and initial content deduplication.

content remains challenging (Welbl et al., 2021; Markov et al., 2023a), and existing methods have been shown to
discriminate against minoritized groups (Xu et al., 2021).

11
commoncrawl.org

12We use just enough snapshots to meet the volume goal described in §2 — at least 2T tokens.
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This tool was also used for the Common Crawl subset of RedPajama v1 (Together Computer, 2023c)
and RedPajama v2 (Together Computer, 2023a). CCNet processes each web page with a fastText
language identification model13 to determine the primary language for each document; we keep all
pages with English document score greater or equal to 0.5 (removed 61.7% of web pages by size).
Further, CCNet identifies and removes very common paragraphs by grouping shards in each snapshot
into small sets and removing duplicated paragraphs in each. This step removed approximately 70%
of paragraphs, primarily consisting of headers and navigation elements. Overall, CCNet pipeline
filters out 84.2% of the content in Common Crawl, from 175.1 TB to 27.7 TB. More details provided
in Appendix J.4.

3.1.2 Z Quality Filtering

Web crawled data requires significant cleanup before it can be used for language model pretraining.
This step removes artifacts introduced by the conversion from HTML to plain text (e.g., page
headers, ill-formatted text) and discards pages that do not contain enough “prose-like” text (e.g.,
repeated text, short segments). First, CCNet natively provides a quality filter using KenLM (Heafield,
2011) perplexity to group documents into buckets based on Wikipedia-likeness; this buckets are
often interpreted as high (21.9%), medium (28.5%), or low (49.6%) quality context. However, per
arguments posed in Rae et al. (2021) and Almazrouei et al. (2023) against model-based quality filters,
as well as our own manual inspections of content distributed between these buckets, we opted not use
these CCNet quality scores. Instead, in Dolma, we achieve quality filtering by combining heuristics
introduced by Gopher (Rae et al., 2021) and C4 (Raffel et al., 2020). Specifically we keep all the
Gopher rules (henceforth, Gopher All) and keep a single heuristic from C4 designed to remove
paragraphs that do not end in punctuation (C4 NoPunc; as opposed to C4 All). Detailed description
of filtering rules provided in Appendix J.4.

0 50B 100B

20

30

40
Baseline

C4 NoPunc

C4 All

Gopher All

C4 NoPunc + Gopher All

C4 (100 Domains)

Total Tokens

Pe
rp

le
xi

ty

0 50B 100B

0.3

0.35

0.4

0.45

0.5

Baseline

C4 NoPunc

C4 All

Gopher All

C4 NoPunc + Gopher All

HellaSwag

Total Tokens

A
cc

ur
ac

y

Figure 2: Model ablations for quality filters of the web processing pipeline. We find that a combination
of C4 and Gopher rules leads to improvements in both language fit (left, on the C4 100 Domains
subset of Paloma (Magnusson et al., 2023)) and downstream performance (right, on HellaSwag Zellers
et al. (2019)).

Ablation results shown in Figure 2 validate our filtering strategy: we find that C4 NoPunc on its
own outperforms both C4 All as well as Gopher All on both perplexity and downstream tasks.
Finally, combining Gopher All + C4 NoPunc offers the best performance. In all, the Gopher rules
tagged 15.23% of UTF-8 characters for removal, while the C4 rule tagged 22.73% of characters for
removal. When comparing our heuristics against CCNet’s quality scores, the remaining documents
after filtering fall into CCNet buckets of high (22.8%), medium (26.2%) and low (51.0%) quality,
revealing very little correlation between model and heuristic-based quality filters.

Using the tool from Elazar et al. (2023), we inspect our filtered dataset for occurrences of repeated
n-grams. Despite filtering using Gopher and C4 rules, we still found undesirable texts such as
repeated sequences of ‘-’ 100 times, occurring over 60 million times, or repeated sequences of ‘bla’,
occurring 19.1 million times (see Table 2). Based on this, we implement n-gram heuristics to identify
and remove documents containing these sequences; specifically, we remove any repeated sequence
longer than 100 UTF-8 characters. While this only removed 0.003% of the total characters in the

13
https://fasttext.cc/docs/en/language-identification.html
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dataset, removal of these documents can prevent loss spikes during training, as was empirically
found14 in Scao et al. (2022). We also note that this was a fairly conservative heuristic that left many
repeated sequences remaining in the dataset; we found from manual inspection of these sequences
that they often served as webpage layout elements as opposed to parsing irregularities.

Repeated n-gram sequence

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ...
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ...
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ...

Table 2: Examples of common repeated n-gram sequences in the web subset identified through
WIMBD tools (Elazar et al., 2023). Repeted sequences longer than the ones shown here have been
removed after being identified by WIBMD.

3.1.3 Z Content Filtering

Filtering Toxic Content Data sampled from the internet may contain harmful or toxic con-
tent (Matic et al., 2020; Luccioni and Viviano, 2021; Birhane et al., 2023a,b). As highlighted in §2,
we filter Dolma to reduce harms that might arise from training language models on toxic content. We
used the Jigsaw Toxic Comments dataset (cjadams et al., 2017), which contains forum comments
tagged with (multilabel) categories “toxic”, “severe toxic”, “threat”, “insult”, “obscene”,
and/or “identity hate” alongside unlabeled comments, to train two fastText classifiers—a binary
“hate” detector and a binary “NSFW” detector:

1. For our “hate” detector, we group all unlabeled comments and “obscene”-only comments as
negatives and left remaining comments as positives.

2. For our “NSFW” detector, we take all comments tagged as “obscene” as positives and left other
remaining comments as negatives. It is important to note this detector only filters toxic content that
mentions sexual or obscene topics, not sexual content in general.

For both these models, we run them on Common Crawl sentences15 with a filtering threshold of 0.40
based on manual threshold tuning. We chose our threshold seeking a balance between (1) maximizing
precision and recall from inspecting predicted toxic sentences on a single snapshot of Common Crawl,
as well as (2) minimizing too much data removal.16 We always remove just the span that has been
tagged as toxic, not the full document. We make both of these models available publicly.17

In Figure 3, we compare the effect of two different thresholds for the “hate” and “NSFW” detector.
The “High Threshold” configurations remove less content, but generally yield higher perplexity on
evaluation set and lower downstream performance. The “Low Threshold” configurations remove more
content and generally have higher performance, but remove more units of text (7.3% vs 34.9% and
5.5% vs 29.1%, for “hate” and “NSFW” UTF-8 characters, respectively). Because lower thresholds
might lead to false positive, and improved performance can be achieved by combining content filters
with quality and deduplication filters, we use the “High Threshold“ versions of the “hate” and “NSFW”
filters, removing any sentence with a score greater than or equal to 0.4.

Filtering Personal Identifiable Information Data sampled from the internet can also leak personal
identifiable information (PII) of users (Luccioni and Viviano, 2021; Subramani et al., 2023); such PII
is abundant in large-scale datasets (Elazar et al., 2023).

14More information at github.com/bigscience-workshop/bigscience/blob/master/train/
tr8-104B-wide/chronicles.md

15Identified using BlingFire sentence splitter (Microsoft, 2019).
16For example, the “hate” and “NSFW” detectors filter out 34.9% and 29.1% of tokens from Common Crawl

at thresholds of 0.0004 and 0.00017, respectively.
17“NSFW” fastText tagger and “hate” fastText tagger.
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Figure 3: Model ablations for toxic content filters of the web processing pipeline. We find that
adopting a “Low Threshold” for the “hate” and “NSFW” toxic content filters results to improvements
in both lanugage fit (left, on the C4 100 Domains subset of Paloma (Magnusson et al., 2023))
and downstream performance (right, on HellaSwag Zellers et al. (2019)); however, more content is
removed (7.3% vs 34.9% and 5.5% vs 29.1%, for “hate” and “NSFW” UTF-8 characters, respectively).

PII detection can be accomplished using model-based tools (Dernoncourt et al., 2017; Microsoft,
2018; Hathurusinghe et al., 2021; Lison et al., 2021; Lukas et al., 2023; Mazzarino et al., 2023) or
rule-based approaches (Aura et al., 2006; Elazar et al., 2023). The former generally offer better
performance, while the latter are faster.

The size of Dolma makes impractical to use model-based tools; instead, we rely on carefully crafted
regular expressions. Following the findings of Subramani et al. (2023), we tag three kinds of PII that
can be detected with sufficient accuracy: email addresses18, IP addresses19, and phone numbers20.
Once spans are tagged, we employ different processing strategies based on the their density on each
document:

• 5 or fewer PII spans detected: we replace all spans on a page with special tokens
|||EMAIL_ADDRESS|||, |||PHONE_NUMBER|||, and |||IP_ADDRESS||| for email addresses, phone num-
bers, and IP addresses respectively21. In total, we find 0.02% of documents in the 25 Common
Crawl snapshots match this filter.

• 6 or more PII spans detected: we remove any document that contains 6 or more matching PII
spans. We this approach because pages containing abundant phone numbers and email addresses
are likely to pose a greater risk of discosing other PII classes. 0.001% of documents in the 25
Common Crawl snapshots match this filter.

In Figure 4, we show results of experiment designed to quantify the impact of our PII strategy.
Overall, we find that, in both language modeling and downstream tasks, PII removal and masking has
no discernible effect on model performance.

3.1.4 ç Deduplication

Recent efforts indicate that the deduplication of data leads to language models that train more
efficiently (Lee et al., 2022). Following this principle, we deduplicate data in the web pipeline. We
perform three stages of deduplication:

(i) Exact URL deduplication: mark pages that share the same URL. No normalization is performed.
This filter is primarily intended to remove pages that have been crawled multiple times. Overall,
it removes 53.2% of documents in the 25 snapshots used to create Dolma. URL deduplication is
commonly used as the first stage for web crawls thanks to its computational efficiency (Agarwal
et al., 2009; Koppula et al., 2010; Penedo et al., 2023).

18Regex: [.\s@,?!;:)(]*([\^\s@]+@[\^\s@,?!;:)(]+?)[.\s@,?!;:)(]?[\s\n\r]
19Regex: \s+\(?(\d{3})\)?[-\. ]*(\d{3})[-. ]?(\d{4})
20Regex: (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9]{1,2})\.){3}

(?:25[0-5]|2[0-4][0-9]|[01]?[0-9]{1,2})
21When training models on Dolma, we these special tokens to the tokenizer vocabulary. For all results shown

in this paper, we use allenai/gpt-neox-olmo-dolma-v1\_5.
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Figure 4: 1B model ablations for PII strategies. We found no discernible differences between
removing all documents with PIIs, only removing documents with ≥ 5 PII instances and masking the
rest, and doing no PII filtering at all.

(ii) Exact document deduplication: mark pages that contain the same text. No punctuation or
whitespace is removed. Empty documents count as duplicates. Overall, it removes an additional
14.9% of documents after URL deduplication.

(iii) Exact paragraph deduplication: mark identical paragraphs across pages as duplicates. We keep
definition of this unit consistent with previous filters: a paragraph is a span of text separated
by the newline UTF-8 character “\n”. Overall, this filter tags 18.7% of documents in the URL-
deduplicated set as repeated.

This multi-stage approach is designed to increase efficiency: stages (i) and (ii) are designed to remove
copies of the same item (identical pages might have multiple URLs, such in the case of the same news
article being included in multiple online newspaper), thus can be executed before before any content
or quality filtering, reducing the number of pages to process. In contrast, stage (iii) removes repeated
content that appears on the different pages (such as the same byline appearing under all articles
written by the same author), thus altering portion of pages and potentially disrupting content analysis.
All stages use a Bloom filter (Bloom, 1970) data structure for efficient content deduplication.

3.1.5 �Zç Putting It All Together

How do steps in the pipeline compose? To summarize, the Dolma web pipeline transform the
output of CCNet by first performing URL and document-level deduplication, followed by quality
filtering (Gopher, C4 NoPunc), content filtering (toxic content, PII), and, finally, paragraph-level
deduplication. But What’s the combined outcome of the filtering?
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Figure 5: Compounding effect of quality filtering, content filtering, and paragraph-level deduplication
on 1B model ablations. Combination of all components in the pipeline leads to improvements in
both language fit (left, on the C4 100 Domains subset of Paloma (Magnusson et al., 2023)) and
downstream performance (right, on HellaSwag Zellers et al. (2019)).

In Figure 5, we show the compounding effect of the stages of the pipeline. We find that the
combination of the three stages achieve the best performance on downstream tasks, while content
filtering slightly hurts language fit of C4 100 domains subset. As stated in §2, we leverage downstream
evaluation tasks to make decision; thus we use all steps in the pipeline when creating Dolma.
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Data distribution We use the tool from Elazar et al. (2023) to inspect the final data composition
in Figure 6. In particular, we analyze web domain, year, and language distributions.
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Figure 6: Frequencies over different document metadata as computed using the What’s In My Big
Data? tool from Elazar et al. (2023). In subfigure (c), un denotes documents whose language could
not be identified; long indicates documents that are too long to be processed with the tool’s language
ID module.

We note that Dolma contains documents from a broad set of internet domains, mostly from 2020,
2022, and 2021. The most common internet domains in Dolma, per token, are patents.google.com,
followed by www.nature.com and www.frontiersin.org. In fact, similar to other corpora reported
in Elazar et al. (2023), 63.6% of Dolma’s web documents are from ‘.com’ sites (followed then by
‘.org’ and ‘.co.uk’ sites). Finally, as all language identification tools are imperfect, we summarize
what languages are remaining post English-only filtering: We find the most common language
after English is not well identified (‘un’) with 0.86% of the documents, followed by 0.06% of the
documents identified as Chinese.

Do quality and content filters have similar effects? In order to further understand how filters
described in §3.1.2 and §3.1.3 interact with each other, we perform a correlation analysis on a subset
of documents sampled from our pipeline.
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Figure 7: Pearson Correlation of filters on the Head, Middle, and Tail parts of our Common Crawl
data. The correlation is computed for 24M, 20M, and 43M documents respectively. The filters
are Gopher=Gopher rules from Rae et al. (2021), Dedup.=Deduplication, PII=Personal Identifiable
Information, Hate=Hate Speech and Decont.=Decontamination.

The correlation among the documents flagged for removal by our Common Crawl filters is depicted in
Figure 7. We find that correlations are generally low, thus our filters select fairly different documents
and are not redundant. There is some positive correlation between our PII (Personal Identifiable
Information) filters and filters removing hate speech. This is likely because hate speech is often
directed at people. The Gopher filtering rules correlate negatively with our deduplication, especially
for the high-perplexity tail part of our data. This is due to the Gopher rules removing many high-
perplexity documents such as random strings, which are not caught by deduplication due to their
randomness. As these random strings likely do not contribute to a better understanding of language,
it is important to filter them out and thus rely on filters beyond deduplication.
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3.2 Ð Code Pipeline

{
  "glossary": {
    "title": "example glossary",
    "GlossDiv": {
      "title": "S",
      "GlossList": {
        "GlossEntry": {
          "ID": "SGML",
          "SortAs": "SGML",
          "GlossTerm": "Standard Generalized Markup Language",
          "Acronym": "SGML",
          "Abbrev": "ISO 8879:1986",
          "GlossDef": {

JSON

    # Python 3: Fibonacci series up to n
    def fib(n):
        a, b = 0, 1
        while a < n:
            print(a, end=' ')
            a, b = b, a+b
        print()
    fib(1000)PY

    fn main() {
        // Variables can be type annotated.
        let logical: bool = true;

        let a_float: f64 = 1.0;  // Regular annotation
        let an_integer   = 5i32; // Suffix annotation

        // Or a default will be used.
        let default_float   = 3.0; // `f64`
        let default_integer = 7;   // `i32`

        // A type can also be inferred from context.
        let mut inferred_type = 12; // Type i64 is inferred from another line.
        inferred_type = 4294967296i64;

        // A mutable variable's value can be changed.
        let mut mutable = 12; // Mutable `i32`
        mutable = 21;

        // Error! The type of a variable can't be changed.
        mutable = true;

        // Variables can be overwritten with shadowing.
        let mutable = true;
    }

RUST

Language 
Filtering

Quality Filters
StarCoder + RPJ

Content Filters
PII

Figure 8: Overview of the data pipeline to process code documents.

3.2.1 � Data Acquisition and Z Language Filtering

We derive the code subset of Dolma from The Stack (Kocetkov et al., 2022), a collection of
permissively-licensed GitHub repositories. We use the near-deduplicated version as a starting point,
thus removing the need to perform deduplication ourselves. The raw version of this dataset was
collected in March 2023. We filter data-heavy documents by removing files with extensions such as
JSON and CSV.

3.2.2 Z Quality Filtering

We apply heuristics derived from RedPajama v1 (Together Computer, 2023c) and StarCoder (Li
et al., 2023) datasets. The former consist of rules to remove repetitive file preambles, such as
license statements22 and documents with excessively long lines or mostly numerical content. Overall,
RedPajama Rules (RPJ) are designed to remove files that are mostly data or generated through
templates. To further select high quality code snippets, we leverage rules from the StarCoder pipeline;
these heuristics filter GitHub repositories with no to few stars, files with too few or too many
comments, and HTML files with low code-to-text ratio. For a detailed description of these rules,
see §J.4.
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Figure 9: Comparison of quality filtering when using RedPajama Rules (RPJ) rules or RPJ and
StarCoder rules combined. Combining the two rulesets results in slightly improved perplexity on
code documents (left, HumanEval; Chen et al., 2021b ), more stable perplexity curves on non-code
test sets (center, on the C4 100 Domains subset of Paloma; Magnusson et al., 2023), and slightly
improved downstream performance (right, on HellaSwag; Zellers et al., 2019).

In Figure 9, we present a comparison between RedPajama (RPJ) and StarCoder rules. In our
ablations we find that, compared to RPJ rules alone, RPJ and StarCoder combined lead to lower
perplexity on code datasets (e.g., HumanEval; Chen et al., 2021b), more stable perplexity during
training on non-code test sets (e.g., C4 100 Domains subset of Paloma; Magnusson et al., 2023), and
improved downstream performance (e.g., HellaSwag; Zellers et al., 2019). Therefore, we chose to
use this combination when creating the final mix for Dolma.

22We keep this information in the metadata associated with each document in Dolma.
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3.2.3 Z Content Filtering

We apply the same filtering rules to from the web pipeline (§ 3.1) to mask personal identifiable
information (PII). Documents with greater than 5 PII instances are removed from Dolma. In all other
instances, emails, phone numbers, and IP addresses are masked using special tokens.

We also remove code secrets or personal information. To do so, we use the detect-secrets (Yelp,
2013) library and remove any documents with a match.

3.2.4 ç Deduplication

We used the already-deduplicated version of The Stack published by Kocetkov et al. (2022); their
approach uses the pipeline first introduced by Allal et al. (2023), which uses MinHash Broder (2002)
and Locally Sensitive Hashing to find similar documents.

3.3 Ü Conversational Forums Pipeline
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Figure 10: Overview of the data pipeline to process conversational forums.

3.3.1 � Data Acquisition and Z Language Filtering

The conversational subset of Dolma was derived from the Pushshift Reddit dataset (Baumgartner
et al., 2020b), a large collection of forum conversations collected through Reddit’s data API and
distributed by the Pushshift project. We derive the conversational subset in Dolma from 378M
posts from Reddit, from December 2005 until March 2023. We include both submissions—initial
message in conversations on Reddit—and comments—replies to messages—in the dataset. We treat
all submissions and comments as independent documents without any structure or connection to the
thread they appear in; in our evaluation, this simplified representation yields better performance on
downstream tasks. A discussion of this trade-off is presented in Appendix E.

For consistency, we use same strategy as the web pipeline to filter non English content. In particular,
we keep submission and comments with an English score greater than 0.5.

3.3.2 Z Quality Filtering

Conversational forum data must be adequately cleaned to remove content that is too short, repetitive,
or is negatively ranked by the community it was submitted to. We use the pipeline introduced by Hen-
derson et al. (2019) to facilitate cleanup of submissions and comments using Google Dataflow23. We
remove comments shorter than 500 characters, and submissions shorter than 400 characters24. We
also remove documents over 40,000 characters in length.

23
https://cloud.google.com/dataflow

24Qualitative inspection of the data suggested that submissions are of higher quality than comments; thus, we
use a more permissive minimum length.
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We remove comments with fewer than 3 votes25, as lower score are associated with comments that
are deeply nested in a conversational thread (Weninger et al., 2013) or content that is more likely
to results in emotionally charged discourse (Davis and Graham, 2021). Votes have been used as a
signal in constructing the WebText (Radford et al., 2019) and OpenWebText (Peterson, 2020) corpora.
We discard documents that have been deleted by their authors or removed by moderators; further,
documents that have been labeled by their authors as “over 18” were also removed. We exclude any
document originated from any of the 26,123 banned and not safe for work subreddits26 we curated.

3.3.3 Z Content Filtering

We apply the same filtering rules to used in the web pipeline (§3.1.3) to remove toxic content and
mask PII. Unlike in the case of the web pipeline, we fully remove a document if part of it are tagged
as toxic. We employ this strategy because content from Reddit is shorter in length, thus it is more
likely that a single sentence classified as toxic is a strong indication of the entire document being
toxic as well.

3.3.4 ç Deduplication

We employ the same strategy used in the web pipeline (§3.1.4). Since submissions and comments
are shorter than web documents, we only deduplicate at a document-level. This strategy is useful to
reduce the incidence of “Copy pasta” (blocks of text that get often repeated across many comments
and subreddits for comedic effect) and other repetitive information.

3.4 Other Data Sources

In this section, we briefly summarize additional high-quality sources that were used to derive Dolma.
For more details on collection and processing, see Appendix §J.3 and §J.4.

� C4 for Curated Web Content Similarly to LLaMA (Touvron et al., 2023a), we include
documents from C4 Raffel et al. (2020) in the Dolma dataset. We further refine this data by
reprocessing it through our web pipeline to remove long, repeated sequences (§3.1.2) and duplicates
(§3.1.4). Finally, we also perform PII masking as described in (§3.1.3);

� PeS2o for Academic Literature The PeS2o dataset (Soldaini and Lo, 2023) is a collection of
approximately 40 million open-access academic papers that have been cleaned, filtered, and formatted
for pre-training of language models. It is derived from the Semantic Scholar Open Research Corpus
(S2ORC) (Lo et al., 2020). As this dataset has been created for language modeling purposes, we use
it as-is.

[ Project Gutenberg for Books Project Gutenberg is a repository of over 70 thousand public
domain books. We collected Project Gutenberg’s archive in April 2023. We use the same fastText-
based language identification model to identify English language books and include them in Dolma.
More details in our Data Sheet § J.

] Wikipedia and Wikibooks for Encyclopedic Content This dataset was derived by March 2023
Wikimedia dumps. We use the “English” and “Simple” editions of Wikipedia and Wikibooks as base
for the Encyclopedic subset of Dolma. Sources were processed using WikiExtractor27. We remove
any document with 25 or fewer UTF-8-segmented words, as we found shorter pages to either be the
result of short, templated pages (e.g., pages containing only a few words and an information box) or
XML parsing errors.

25The total votes for each documents are obtained by computing the difference between positive votes, also
known as “upvotes”, negative votes or “downvotes”.

26The list is available at https://github.com/allenai/dolma/blob/main/sources/reddit/atomic_
content_v5/subreddit_blocklist.txt. The list was obtained by merging several sources that tracked
banned subreddits (mostly from posts on Reddit itself). We also measured the fraction of posts within a subreddit
tagged as NSFW, and blocked the subreddit when this fraction exceeded 10%.

27
github.com/attardi/wikiextractor, v. 3.0.7, commit prefix 8f1b434.
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4 Training a Language Model on Dolma
As a final validation step of the Dolma pipeline, we train, evaluate and release a decoder-only, autore-
gressive language model which we call Olmo-1b. In this section, we discuss potential approaches
additional dataset curation decisions specific to model training. In §4.1, we present an approach to
remove benchmark tasks—i.e., decontaminate—from Dolma. Then, in §4.2, we discuss consider-
ations when combining—i.e., mixing—the various document subsets in Dolma to obtain the final
pretraining corpus. Finally, in §4.3, we present experimental results of the resulting Olmo-1b model.
Olmo-1b uses GPT-NeoX tokenizer (Black et al., 2022), which we found to be well suited for Dolma;
we present results supporting our decision in Appendix F.

4.1 Strategies for Benchmark Decontamination in Dolma

In this section we experiment with approaches to remove benchmark contamination from pretraining
and select which is ultimately used in Olmo-1b. Large-scale language datasets contain copies
of benchmarks that are commonly used to evaluate language models (Dodge et al., 2021; Yang
et al., 2023; Elazar et al., 2023). The impact of such contamination is currently debated. For
example, Lee et al. (2022) showed that removing duplicates of validation data from C4 pretraining
increases perplexity on the previously duplicated validation data. Meanwhile, work examining
post-hoc performance difference between contaminated and uncontaminated downstream data finds
no consistent positive or negative impact (Chowdhery et al., 2022; Brown et al., 2020; OpenAI, 2023).
To start, we focus on the removal of perplexity benchmark contamination, and we measure the extent
of downstream task contamination. We experiment with removing contamination with respect to
an early version of Paloma (Magnusson et al., 2023), a benchmark of 585 text domains designed to
evaluate language model fit to diverse sources. This selection of perplexity evaluations is detailed in
Appendix D.

Decontamination strategy for perplexity evaluation Using the paragraph deduplication tools
described in § 3.1.4, we mark any paragraph in Dolma as contaminated if (i) it is longer than 13
Unicode-segmented tokens28 and (ii) it appears in any of the documents in Paloma. In preliminary
experiments on decontaminating C4 (Raffel et al., 2020) against an early version of Paloma, we
compare the paragraph-based decontamination technique described above with exact-matching whole
documents. Results show that document-based decontamination yields lower matching rate, with
only 1 of 12 subsets with greater than 1% contaminated documents29. However, when considering
paragraph-based decontamination, 6 of 12 perplexity tasks have greater than 1% of documents
contaminated. Since the latter better reflect expected contamination rates, we chose it for the reminder
of this section.

Lastly, we consider two ways of removing contamination. In preliminary experiments on C4, we find
that removing just the contaminated paragraphs by excluding them from documents removes 0.01%
of tokens, while removing whole documents with any contamination removes 0.02% of tokens. In
either case 0.01% of documents are affected. Given that each have relatively small impact, we opt for
removing full documents to avoid disrupting reading order, though this does bias towards removing
longer documents.

Decontamination results for perplexity evaluation To assess the risk of our decontamination
approach, we train30 two 1B parameter models on a 221B token subset of RedPajama v1 (Together
Computer, 2023c), the corpus most similar to Dolma’s intended composition at the time of experi-
menting. The first model is trained on RedPajama v1 as-is, while the second uses the same corpus
after the paragraph-matching, document-removal decontamination approach described above. On this
subset, our decontamination approach removes 2.17% of unicode tokens and 0.66% of documents. In
Table 3 we show that differences in perplexity and downstream task performance are minimal and
do not trend consistently positive or negative. For perplexity, 7 sources degrade and 6 improve; for
downstream tasks, 5 degrade and 4 improve. The largest degradation in a perplexity source is 22.0 to

28Like in Elazar et al. (2023), we only consider paragraph of sufficient length to avoid false positive matches.
29C4 100 Domains subset, which is directly constructed from C4.
30This experiment uses the setup described in Appendix D, including model configuration, optimizer, and

evaluation setup.
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Avg ppl
over subsets

(↓)

Largest subset
ppl diff
(PTB ↓)

Avg acc
on end tasks

(↑)

Largest acc diff
on end task

(SCIQ ↑)

Decontaminated 25.6 22.3 59.2 84.8
Not Decontaminated 25.7 22.0 56.37 86.3
Difference -0.1 0.3 2.8 -1.5

Table 3: Performance differences with and without our decontamination approach on 1B models
trained on RedPajama v1 (Together Computer, 2023c). Perplexity (ppl) results are from Paloma and
downstream (end task) results are from the tasks listed in Appendix D plus COPA (Gordon et al.,
2012). We find no evidence that decontamination degrades overall model performance.

22.3 on Penn Tree Bank. The largest degradation in a downstream task is a drop of 1.5% accuracy on
SCIQ to 84.8%. In conclusion, results show no consistent evidence of performance degradation with
decontamination.

Decontamination in Olmo-1b. As our experiments have derisked our approach for removing
benchmark contamination, we apply it to our model trained on Dolma. The finalized approach for
removing overlap with Paloma is detailed in Magnusson et al. (2023). It applies the steps discussed
in this section with the addition of a filter that ignores overlaps consisting of only punctuation, spaces,
and emoji. These types of tokens can be arbitrarily repeated in text formatting, leading to common
n-grams greater than our 13-gram threshold. On the final Dolma corpus used to train Olmo-1b, our
approach finds less than 0.001% characters in training data contaminated, and removes fewer than
0.02% of documents.

Measuring possible contamination of downstream tasks. We measure data contamination in
Dolma. We follow the same setup from WIMBD (Elazar et al., 2023) and compute the percentage
of instances from tasks with two or more inputs (e.g., natural language inference) that can be found
in a single document. This serves as an upper bound of exact-match contamination in Dolma. We
consider 82 datasets from PromptSource (Bach et al., 2022), and report the datasets that at least 5%
of their test sets can be found in Dolma. We report the results in Figure 11.
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Figure 11: Contamination percentages of datasets from PromptSource (Bach et al., 2022).

Results indicate that portion of datasets in Promptsource appear in Dolma. Six datasets are completely
contaminated (100%): the Winograd Schema Challenge (Levesque et al., 2012), Sick (Marelli et al.,
2014), AX from GLUE (Wang et al., 2018), SemEval (specifically, Task 1 from 2014), COPA from
SuperGLUE (Roemmele et al., 2011), and AXb (the diagnostic task) from SuperGLUE (Wang et al.,
2019). In addition, other datasets are mostly contaminated, with over 90% of their test sets appearing
in Dolma documents: OpenAI HumanEval (Chen et al., 2021a), WIC from SuperGLUE (Pilehvar
and Camacho-Collados, 2019), ESNLI (Camburu et al., 2018), and SNLI (Bowman et al., 2015). We
note that the contaminated datasets have been excluded from the downstream tasks we use for model
evaluation (c.r.f. Appendix D).

4.2 Strategies for Subsets Mixing and Upsampling with Dolma

Like the pretraining corpora of nearly every large-scale language model, Dolma is a multi-source
dataset. Training on Dolma thus requires a mixing strategy that determines how much data from each
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source to include, and potentially which sources to upsample. Like other multi-source corpora (e.g.,
ROOTS (Laurenccon et al., 2023), the Pile (Gao et al., 2020), RedPajama v1 (Together Computer,
2023c)),31 Dolma does not prescribe a single mixing strategy. We refer the reader to Rae et al. (2021)
for an example of how one might programmatically search over mixing configurations to maximize
performance. Here, we perform mixing experiments as an opportunity to answer some research
questions about how different data sources interact. We use the same ablation setup described in §3.

How much code is important for pretraining? It is common practice for language models to be
pretrained on some amount of code, even if code generation is not the intended task. Some research
has suggested that mixing code into training over plain text documents improves performance on
reasoning tasks (Madaan et al., 2022). We investigate whether this observation holds for models
trained on Dolma, and if so, how much code is needed?

Dataset 0% Code 5% Code 15% Code

bAbI (ICL) 0.0 ± 0.0 8.8 ± 0.9 10.1 ± 2.8
WebNLG (ICL) 16.8 ± 1.1 19.3 ± 1.1 22.0 ± 1.3
GSM8K (FT) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
GSM8K+PAL (FT) 11.8 ± 0.8 14.2 ± 1.3 14.7 ± 0.9

Table 4: Performance of three models pre-trained with increasing amounts of code on three datasets,
across 5 random seeds. We measure exact match for bAbI and GSM8K, and Rouge-2 for WebNLG.

We create three mixtures from the C4 and Stack subsets containing 0%, 5% and 15% of code data. On
each, we train a 1B model. We evaluate these models on three different reasoning tasks: bAbI (Weston
et al., 2015), WebNLG Gardent et al. (2017) and GSM8k Cobbe et al. (2021). For the first two tasks,
we follow the experimental setup of Muennighoff et al. (2023b) and evaluate each model in an ICL
setup with a changing number of demonstrations (0-5) across 5 random seeds. Muennighoff et al.
(2023b) show that adding code to pre-training data improves ICL performance on bAbI and WebNLG
and they suggest that code improves long-range state-tracking capabilities. Our experiments, as
shown in Table 4, corroborate these findings: while the C4-only model fails on all bAbI tasks, adding
code improves performance, with a similar trend for WebNLG.

On the more difficult GSM8k benchmark, all models failed to get any correct answer in an ICL setup,
and even when fine-tuning the models on the entire training set. However, we find that by fine-tuning
on program-aided output, where questions are solved by writing Python snippets as described in Gao
et al. (2022), code models outperform the C4-only model. These results show that models pre-trained
on code can leverage code generation to answer challenging reasoning tasks even when the original
task does not directly involve code.

Evaluating mixing strategies for pretraining on Dolma While Dolma does not prescribe a
specific source mixture, we analyze some commonly used strategies32 and compare their effect using
the Paloma evaluation suite (Magnusson et al., 2023). Specifically, we present and evaluate four
possible data mixtures in Table 5.

We show results of mixtures in Figure 12. Overall, we observe that the different mixtures have an
effect on the ability of resulting models to capture specific subdomains. All mixtures show similar
perplexity scores on pages sampled from 100 domains from C4 (Figure 12, left), indicating their
general effectiveness at modeling web documents. On the other hand, we note how models struggle
to model specialized domains unless they are exposed to them. As an example, a model trained on
the Web-only mix struggles to represent data in the code domain (Figure 12, center, HumanEval).
Finally, we use results on the S2ORC subset of M2D2, which consists of academic papers, to illustrate
how different data mixtures affect perplexity. As is it the case with code, Web-only model exhibits
higer perplexity due to domain mismatch. On the other hand, models trained on Reference+ and
Gopher-like mixes achieve lower perplexity than the model trained on the Naïve mix, due to more
in-domain content. However, we note that, despite significant differences in the amount of academic

31RedPajama v1 was a reproduction of the multi-source corpus used in LLaMA (Touvron et al., 2023a).
RedPajama v2 (Together Computer, 2023a) focuses solely on Common Crawl and is thus single-source.

32We did not include any social data in these mixes as it was not ready at the time of this experiment.
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Mix Name Description Sampling Proportion

Naïve Sample each source in Table 1 equally.
� Web 100%
Ð Code 100%
]� Ref. 100%
[ Books 100%

� Web 83.5%
Ð Code 13.8%
] � Ref. 2.5%
[ Books 0.2%

Web Only
Similar to Ayoola et al. (2022), we test a mixture
that only uses web data.

� Web 100%
Ð Code 0%
]� Ref. 0%
[ Books 0%

� Web 100%
Ð Code 0%
] � Ref. 0%
[ Books 0%

Reference+

It is common practice to upsamole knowledge-
intensive documents when composing training
mixture. In our case, we upsample the PeS2o
papers, Wikipedia, Wikibooks, and Gutenberg
books subsets by 2x.

� Web 100%
Ð Code 100%
]� Ref. 200%
[ Books 200%

� Web 81.2%
Ð Code 13.5%
] � Ref. 4.9%
[ Books 0.4%

Gopher-like

Following Rae et al. (2021), we create a mix that
is heavily biased towards reference material. As
we do not have access to the same sources, an
exact replication of their mix is not possible.

� Web 17%
Ð Code 8%
]� Ref. 200%
[ Books 200%

� Web 68.4%
Ð Code 5.4%
] � Ref. 24.2%
[ Books 2.0%

Table 5: Overview of the mixtures and their composition.
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Figure 12: 1B model ablations for different proportions of Dolma data. All mixture perform similarly
on web data (left), while excluding code increases perplexity on code datasets (center). Finally,
increasing reference material by upsampling papers and Wikipedia yields lower perplexity on S2ORC
(right). Overall, source distribution is linked to downstream capabilities; thus, Dolma users should
sample subsets according to their needs.

papers between Reference+ and Gopher-like (4.9% vs 24.2%), they achieve nearly identical results,
suggesting that even a relatively small percentage of in-domain data is sufficient to achieve good
domain fit.

4.3 Evaluating Olmo-1b

In Table 6 we compare Olmo-1b with other 1B models. Note that while parameter count is matched
here, only TinyLlama has been trained for a comparable number of tokens while Pythia 1B is trained
for nearly 10 times fewer tokens and the data composition of StableLM2 is unknown. Nevertheless
we find that Olmo-1b performs better on average than the most comparable model, TinyLlama,
outperforming it in 4 out of 8 tasks. Though zero-shot evaluations of downstream tasks are often
challenging for these relatively small 1B models, the performance for all the tasks on all the models
is above naive random performance. Further details about the downstream tasks is included in
Appendix D.

In Figure 13 we assess how the Dolma mix that we use to train Olmo-1b compares to other popular
pretraining corpora in terms of perplexity of models where all other variables than pretraining data
are controlled. In particular we fix the number of tokens each model is trained on to 150B, so
that data scale and differences in learning rate schedule do not confound with the effect from data
composition that we intend to study. This analysis uses the 1B baselines from Paloma and evaluates
Paloma’s highest-level metric, which computes perplexity over the combination of test sets from 11
data sources. Other more fine-grained perplexity results comparing these baselines are available in
Magnusson et al. (2023). The present analysis excludes sources that are not publicly available, involve
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Task StableLM2 1.6B
(Stability AI, 2024)

Pythia 1B
(Biderman et al., 2023)

TinyLlama 1.1B
(Zhang et al., 2024)

Olmo-1b
this work

ARC-E (Clark et al., 2018) 63.7 50.2 53.2 58.1
ARC-C (Clark et al., 2018) 43.8 33.1 34.8 34.5
BoolQ (Clark et al., 2019) 76.6 61.8 64.6 60.7

HellaSwag (Zellers et al., 2019) 68.2 44.7 58.7 62.5
OpenBookQA (Mihaylov et al., 2018) 45.8 37.8 43.6 46.4

PIQA (Bisk et al., 2019) 74.0 69.1 71.1 73.7
SciQ (Welbl et al., 2017) 94.7 86 90.5 88.1

WinoGrande (Sakaguchi et al., 2019) 64.9 53.3 58.9 58.9

Average 66.5 54.5 59.4 60.3

Table 6: Comparison of Olmo-1b against other similarly sized language models. Olmo-1b was trained
on 3 trillion tokens from a preliminary version of Dolma (v. 1.5). Overall, Olmo-1b shows better
performance than TinyLlama, which has been trained on a similar number of tokens. Olmo-1b
outperforms Pythia 1B, but the latter has been trained on one order of magnitude fewer tokens.
StableLM2 is included in this table as a reference, but it cannot be fairly compared with the other
works since composition of its training data is not known.
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Figure 13: Perplexity over all the standard language modeling and fine-grained domain sources in
the final, released version of Paloma (Magnusson et al., 2023), excluding code data not supported
for decontamination. The models are 1B baselines from Paloma trained on 150B tokens of each
corpus. Since Paloma takes stratified samples of hundreds of fine-grained domains, it emphasizes fit
to heterogeneous, curated sources more than evaluations on monolithic Common Crawl data like C4.
Pile includes the least Common Crawl data, but mostly exhausts the small curated data sources it
draws on. Dolma and, to a lesser extent, RedPajama demonstrate the possibility for maintaining this
sample efficiency on fit to diverse domains while including large scale Common Crawl data.

fringe or toxic text, or that consist of code data not supported by the benchmark decontamination
approach we use. This leaves C4 (Raffel et al., 2020), mC4-en (Chung et al., 2023), Wikitext 103
(Merity et al., 2016), Penn Treebank (Marcus et al., 1999; Nunes, 2020), RedPajama (Together
Computer, 2023c), Falcon-RefinedWeb (Penedo et al., 2023), Dolma (this work), M2D2 S2ORC
(Reid et al., 2022), M2D2 Wikipedia (Reid et al., 2022), C4 100 domains (Chronopoulou et al., 2022),
and Dolma 100 Subreddits (this work).

Our controlled perplexity analysis reveals the importance of including non-Common Crawl data
from diverse curated sources. The metric that we use from Paloma surfaces how models fit to more
heterogeneous data, because it samples marked domains from each source equally rather than by
their unequal proportions in the source. Intuitively, the baseline trained on the Pile is well fit to such
data as that pretraining corpus is mostly sourced from just such smaller, hand-picked sources. But as
we wish to scale the total number of tokens in a corpus, the challenge becomes how to integrate more
available Common Crawl data without losing sample efficiency on diverse evaluations such as this
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Paloma metric. In this case we see that the Dolma baseline nearly matches the performance curve
of the Pile baseline even though the fraction of Common Crawl data included is more than 4 times
greater.

5 Releasing Dolma
Risk mitigation We recognize that any dataset derived from large web crawls will contain factually-
incorrect information, toxic language, hate speech, PII, and other types of harmful content. While we
have made an effort to curate this dataset taking this into consideration, we believe risk mitigation
is best approached from multiple directions, including careful consideration of licenses and access
controls.

Copyright While most datasets we used were curated with copyright and licensing in mind (e.g.,
open access papers in peS2o (Soldaini and Lo, 2023), open source repositories in the Stack (Kocetkov
et al., 2022)) or were already permissively licensed (e.g., Wikipedia is released under a Creative
Commons license), we recognize that large web crawls will also contain copyrighted material. Yet,
given current tools, it’s not possibly to reliably or scalably detect copyrighted materials in a corpus
of this size. Our decision to release Dolma publicly factors in several considerations, including
that all our data sources were publicly available and already being used in large-scale language
model pretraining (both open and closed), we refer the reader to our public position on AI and fair
use (Farhadi et al., 2023).

We recognize that the legal and ethical landscape of AI is changing rapidly, and we plan to revisit our
choices as new information becomes available.
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Mostafa Dehghani, Fangyu Liu, Sid Mittal, Junhyuk Oh, Seb Noury, Eren Sezener, Fantine Huot,
Matthew Lamm, Nicola De Cao, Charlie Chen, Gamaleldin Elsayed, Ed Chi, Mahdis Mahdieh,
Ian Tenney, Nan Hua, Ivan Petrychenko, Patrick Kane, Dylan Scandinaro, Rishub Jain, Jonathan
Uesato, Romina Datta, Adam Sadovsky, Oskar Bunyan, Dominik Rabiej, Shimu Wu, John Zhang,
Gautam Vasudevan, Edouard Leurent, Mahmoud Alnahlawi, Ionut Georgescu, Nan Wei, Ivy
Zheng, Betty Chan, Pam G Rabinovitch, Piotr Stanczyk, Ye Zhang, David Steiner, Subhajit Naskar,
Michael Azzam, Matthew Johnson, Adam Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias,
Afroz Mohiuddin, Faizan Muhammad, Jin Miao, Andrew Lee, Nino Vieillard, Sahitya Potluri, Jane
Park, Elnaz Davoodi, Jiageng Zhang, Jeff Stanway, Drew Garmon, Abhijit Karmarkar, Zhe Dong,
Jong Lee, Aviral Kumar, Luowei Zhou, Jonathan Evens, William Isaac, Zhe Chen, Johnson Jia,
Anselm Levskaya, Zhenkai Zhu, Chris Gorgolewski, Peter Grabowski, Yu Mao, Alberto Magni,
Kaisheng Yao, Javier Snaider, Norman Casagrande, Paul Suganthan, Evan Palmer, Geoffrey
Irving, Edward Loper, Manaal Faruqui, Isha Arkatkar, Nanxin Chen, Izhak Shafran, Michael
Fink, Alfonso Castaño, Irene Giannoumis, Wooyeol Kim, Mikołaj Rybiński, Ashwin Sreevatsa,
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Finally, Kyle Lo and Luca Soldaini led the overall Dolma project and were involved in all aspects,
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C Details about pretraining data behind largest LMs

We provide a high-level overview of the pretraining data curation practices (or lack of reporting
therof) of the largest LMs to illustrate the need for clear documentation and transparency around
dataset curation.

C.1 Llama 2 (Touvron et al., 2023b)

Touvron et al. (2023b) provides limited information on pretraining data used for Llama 2; we
summarize what we could from gather from their manuscript’s Sections 2.1, 4.1, and A.6:

1. Corpus size. 2T tokens.

2. Data provenance. N/A aside from they avoided using Meta user data.

3. PII. Reported as excluded data from certain websites known to contain high volumes of PII,
though what these sites are was not disclosed.

4. Toxicity. Not explicitly discussed, but appears to not have performed toxicity filtering,
opting instead to handle toxic text generation in a later training stage. They do report results
from a post hoc analysis in which they used a HateBERT (Caselli et al., 2021) classifier
finetuned on ToxiGen (Hartvigsen et al., 2022) to score each document line (and averaged
to produce a document-level score).

5. Language ID. Not stated as used in pretraining data curation, but they provide a post hoc
analysis of the pretraining dataset using fastText Language ID with a 0.5 threshold for
detected language. We assume this is likely the same protocol they used for pretraining data
curation as it is also seen in the CCNet library (Wenzek et al., 2020a), which was used for
Llama (Touvron et al., 2023a).

6. Quality. N/A.

7. Deduplication. N/A.

8. Decontamination. They provide extensive reporting on their deduplication method, which
relies on a modified version of the ngram deduplication tool from Lee et al. (2022).

9. Other. Reported upsampling certain sources, but without further details. They also report a
similar analysis as in PaLM 2 (Anil et al., 2023) on aggregate statistics about demographic
identities and English pronouns.

C.2 PaLM 2 (Anil et al., 2023)

Anil et al. (2023) provides limited information on pretraining data used for PaLM 2; we summarize
what we could from gather from their manuscript’s Sections 3 and D1:

1. Corpus size. Unreported other than it’s larger than what was used to train PaLM (Chowdhery
et al., 2022)

2. Data provenance. Unreported other than they use web documents, books, code, mathemat-
ics, and conversational data.

3. PII. Reported as performed filtering, but without further details.

4. Toxicity. Toxic text identified using Perspective API but lacking details needed for repro-
duction (i.e., text unit, threshold). No details on removal. They did report tackling toxicity
through the use of control tokens, but do not provide enough details on this method.

5. Language ID. Reports the most frequent languages included as well as their frequencies.
Lacking details needed for reproduction (i.e., text unit, tools used, threshold).
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6. Quality. Reported as performed filtering, but without further details.

7. Deduplication. Reported as performed filtering, but without further details.

8. Decontamination. N/A.

9. Other. Anil et al. (2023) report aggregated statistics of how often certain demographic iden-
tities are represented (or not) in the data. Such statistics include identities (e.g., American)
or English pronouns. These were identified using tools such as KnowYourData or those
available on GoogleCloud, but the manuscript lacks specifics necessary for reproduction.

C.3 GPT-4 (OpenAI, 2023)

OpenAI (2023) provides limited information on pretraining data used for GPT-4; we summarize what
we could from gather from their manuscript’s Section 2, Appendix C and D, footnotes 5, 6, 10 and
27, and Sections 1.1 and 3.1 in the System Card:

1. Corpus size. N/A

2. Data provenance. N/A aside from reporting that (1) data was sourced from both the Internet
as well as third-party providers, (2) data was sourced mainly before September 2021 with
trace amounts of more recent data, and (3) they included GSM-8K (Cobbe et al., 2021) as a
tiny fraction of the total pretraining mix.

3. PII. N/A.

4. Toxicity. Removed documents that violate their usage policies from pretraining, including
“erotic content,” using a combination of lexicon-based heuristics and bespoke classifiers
following Markov et al. (2023b).

5. Language ID. N/A aside from reporting that the majority of pretraining data is in English.

6. Quality. N/A.

7. Deduplication. N/A.

8. Mixture.

9. Decontamination. No discussion of decontamination procedures, but instead reported
post-hoc statistics measuring extent of contamination on professional and academic exams,
as well as several academic benchmarks. Method for identifying contamination based on
exact substring match (after removing whitespaces) of a test example against a pretraining
data example. They reported some contamination with BIG-Bench (Srivastava et al., 2023).

10. Other. There are myraid works performing “data archeology” on GPT-4 that is, attempting to
glean information about the pretraining data used in GPT-4 through probes for memorization.
For example, Chang et al. (2023) show GPT-4 can generate sequences from copyrighted
books. We do not attempt to survey all of these investigative works.

C.4 Claude (Anthropic, 2023)

Unfortunately, we know next to nothing about the pretraining data used for Claude.

C.5 LLaMA (Touvron et al., 2023a)

Touvron et al. (2023a) provides some information on pretraining data used for training LLaMA; we
summarize what we could gather from their manuscript’s Section 2.1.

1. Corpus size. 1.4T tokens.

2. Data provenance. LLaMA used data with known provenance, including five shards of
CommonCrawl between 2017 and 2020, C4 (Raffel et al., 2020), GitHub code from Google
BigQuery public datasets (restricted to Apache, BSD and MIT licenses), Wikipedia dumps
from June to August 2022, Project Gutenberg books, Books3 from The Pile (Gao et al.,
2020), LaTeX files from arXiv, and StackExchange pages.

3. PII. N/A.
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4. Toxicity. N/A. Reports evaluation on the RealToxicityPrompts (Gehman et al., 2020)
benchmark.

5. Language ID. Reports use of the CCNet library (Wenzek et al., 2020b), which employs
fastText (Joulin et al., 2016a) classifiers to remove non-English text (below a 0.5 threshold).
No additional language ID reported for C4, GitHub, Books, arXiv, and StackExchange sets.
For Wikipedia, reported restriction of pages to those using Latin or Cyrillic scripts: bg, ca,
cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk.

6. Quality. Reports use of the CCNet library (Wenzek et al., 2020b) to remove low-quality
content from CommonCrawl; CCNet uses KenLM (Heafield, 2011), an n-gram language
model to score perplexity of text as a measure of similarity to Wikipedia text. They do not
report their chosen threshold for filtering. They also report use of a linear model trained to
classify pages as Wikipedia Reference-like or not. They also report light heuristic filtering
of boilerplate content for GitHub and Wikipedia subsets.

7. Deduplication. Reports use of the CCNet library (Wenzek et al., 2020b) to identify dupli-
cated lines for Common Crawl texts, file-level exact match deduplication for GitHub code,
and deduplicating books with over 90% for Gutenberg and Books3 subsets.

8. Decontamination. N/A.

9. Mixture. The manuscript reports a mixture of 67% CommonCrawl, 15% C4, 4.5% GitHub,
4.5% Wikipedia, 4.5% Books, 2.5% arXiv, and 2.0% StackExchange. Model training was a
single epoch over this mixture except for an upsampling of Wikipedia and Books (2 epochs).

10. Other.

C.6 OPT (Zhang, 2022)

From Zhang (2022)’s manuscript and provided datasheet (Gebru et al., 2021), we summarize the
following:

The OPT model was trained on 180B tokens from data sources with known provenance: the datasets
used for RoBERTa (Liu et al., 2019), a subset of the Pile (Gao et al., 2020), and the Pushshift Reddit
Dataset (Baumgartner et al., 2020a) as processed by (Roller et al., 2021). They made several notable
changes to these sources:

1. RoBERTa. (Zhang, 2022) updated the CC-News collection up to September 2021.

2. Pile. (Zhang, 2022) restricted to the following collections: CommonCrawl, DM Math-
ematics, Project Gutenberg, HackerNews, OpenSubtitles, OpenWebText2, USPTO and
Wikipedia. (Zhang, 2022) report omission of other Pile subsets due to gradient norm spikes
at the 1B model scale.

3. Pushshift Reddit. (Zhang, 2022) restricted to only the longest chain of comments in each
thread; an operation that reportedly reduced the dataset by 66%.

(Zhang, 2022) also describe: (1) deduplication using MinHashLSH (Rajaraman and Ullman, 2011)
with a Jaccard similarity threshold of 0.95, and (2) language ID filtering to English-only text, though
they do not describe the method used.

They do not discuss whether they do (or do not) perform any processing for PII, toxicity, quality, or
decontamination.

D Experimental Setup

D.1 Ablation Setup

For all data ablations described in this section, we train a 1B parameter model on up to 150B tokens.
This is in-line with similar model sizes that have been used for ablations in prior work (Le Scao
et al., 2022). Each model is an decoder-only transformer model with 16 layers, 16 attention heads,
and 2048 dimensionality. We use ALiBi positional embeddings (Ofir Press et al., 2021), SwiGLU
activation (Shazeer, 2020), and mixed precision; model context size is set to 2048 tokens. We use
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EleutherAI’s GPT NeoX tokenizer (Black et al., 2022). The model is trained using the LionW
optimizer (Chen et al., 2023a) with 1e-4 peak learning rate, warm-up of 2000 steps, cosine decay,
and 1e-2 weight decay. Batch size was set to 1024. While we set our max number of steps to 95k
(which is approximately 200B tokens), we conclude our experiments at 150B tokens.

We use 64 AMD Instinct MI250X accelerators. Each MI250X accelerator contains two logical nodes;
therefore, from the point of view of our training code, our experiments ran on 128 compute units
grouped in 16 nodes. Per each logical unit, we use a micro-batch size of 8. We implement our
experiments using the OLMo codebase.

D.2 Perplexity Evaluation Suite

During training, we keep track of perplexity using an early version of the Paloma benchmark (Mag-
nusson et al., 2023). Unless otherwise noted references to Paloma indicate this early version. This
version of Paloma was derived from the following datasets:

• C4 (Raffel et al., 2020; Dodge et al., 2021): Standard contemporary LM pretraining corpus
automatically filtered from the April 2019 Common Crawl scrape.

• mC4 (Xue et al., 2020); English subset: the English language portion of a pretraining corpus
automatically filtered from 71 Common Crawl scrapes.

• Pile (Gao et al., 2020), validation set: widely-used used language modeling pretraining corpus;
contains documents curated from multiple sources including several non-web sources.

• WikiText 103 (Merity et al., 2016): a standard collection of verified “Good” and “Featured”
articles on Wikipedia.

• Penn Tree Bank (Marcus et al., 1994): widely-used NLP corpus derived from Wall Street Journal
articles.

• M2D2 (Reid et al., 2022), S2ORC subset: papers from Semantic Scholar (Lo et al., 2020) grouped
by hierarchical academic field categories.

• M2D2 (Reid et al., 2022), Wiki subset: Wikipedia articles grouped by hierarchical categories in the
Wikipedia ontology

• C4 100 domains (Chronopoulou et al., 2022): balanced samples of the top 100 domains in C4.
• Gab (Zannettou et al., 2018): data from 2016-2018 from an alt-right, free-speech-oriented social

media platform that has been shown to contain more hate speech than mainstream platforms.
• ICE (Greenbaum, 1991): English from around the world curated by local experts, with subsets for

Canada, East Africa, Hong Kong, India, Ireland, Jamaica, Philippines, Singapore, and the USA.
• Twitter AAE (Blodgett et al., 2016): balanced sets of tweets labeled as African American or

white-aligned English.
• Manosphere (Ribeiro et al., 2021): sample of 9 forums where a set of related masculinist ideologies

developed over the past decade.
• 4chan (Papasavva et al., 2020): data from 2016-2019 politics subsection of an anonymity-focused

forum found shown to contain high rates of toxic content.

In some experiments we use the finalized version of Paloma released in Magnusson et al. (2023).
This contains evaluation data sampled from the following additional datasets:

• Dolma (this work), uniform sample: A sample 8,358 documents from the Dolma corpus across all
of its subsets (13 from books, 1,642 from Common Crawl web pages, 4,545 Reddit submissions,
450 scientific articles, 1,708 Wikipedia and Wikibooks entries).

• RedPajama v1 (Together Computer, 2023a): 1 trillion tokens replication of the LLaMA 1 (Touvron
et al., 2023a) pretraining corpus.

• Falcon RefinedWeb (Penedo et al., 2023): A corpus of English sampled from all Common Crawl
scrapes until June 2023, more aggressively filtered and deduplicated than C4 and mC4-en.

• Dolma 100 Subreddits (this work): Balanced samples of the top 100 subreddits by number of
posts, sourced from the Dolma Reddit subset.

• Dolma 100 Programming Languages (this work): Balanced samples of the top 100 programming
languages by number of tokens, sourced from the Dolma Stack subset.
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D.3 Downstream Evaluation Suite

We also evaluate models on the following downstream task datasets using the Catwalk frame-
work (Groeneveld et al., 2023):

• AI2 Reasoning Challenge (Clark et al., 2018): A science question-answering dataset broken into
easy and challenge subsets. Only the easy subset was used in online evaluations. The challenge
subset was, however, included in offline evaluations.

• BoolQ (Clark et al., 2019): A reading comprehension dataset consisting of naturally occurring
yes/no boolean questions and background contexts.

• HellaSwag (Zellers et al., 2019): A multiple-choice question-answering dataset that tests situational
understanding and commonsense.

• OpenBookQA (Mihaylov et al., 2018): A multiple-choice question-answering dataset modeled on
open-book science exams.

• Physical Interaction: Question Answering (PIQA) (Bisk et al., 2019): A multiple-choice
question-answering dataset that focuses on physical commonsense and naive physics.

• SciQ (Welbl et al., 2017): A crowdsourced multiple-choice question-answering dataset consisting
of everyday questions about physics, chemistry and biology, among other areas of science.

• WinoGrande (Sakaguchi et al., 2019): A dataset of pronoun resolution problems involving various
forms of commonsense. Modeled after the Winograd challenge of Levesque et al. (2012).

D.4 Training Setup for Olmo-1b

For Olmo-1b, we follow the experimental setup outlined for dataset ablation experiments in Ap-
pendix D, with the following differences:

• We set the max number of steps to 739,328 (which is roughly 3.1T tokens).

• We double the batch size to 2048 and do so by scaling up to 256 compute units (double what we
used for data ablations).

• Due to instabilities we found in the LionW optimizer, we switched to using AdamW.

E Construction of Conversational Threads in Forums Data
Content comes from Reddit’s data API in two separate but linked forms: submissions and comments.
Submissions are either "link posts" to external content (e.g. news articles, blogs, or even multimedia
content) or "self posts" (submissions written by the poster meant to initiate a discussion thread on
a topic). Comments are user replies to either the initiating post (top level comments) or to another
user’s comment. Posts, top-level comments, and replies to comments form a nested conversational
thread with a submission post at it’s root and comments branching out into multiple possible dialogue
trees.
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Figure 14: 1B model ablations for Reddit processing pipeline. Treating submissions and comments
as independent documents (Atomic content strategy) leads to better results on perplexity (e.g., on C4
in Figure 14a) and downstream tasks (e.g., HellaSwag in Figure 14b).
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The tree-like structure of Reddit threads allows for multiple possible data formats depending on how
the various components of a thread are combined.

We investigate three formats for their potential as LM pretraining data:

• Atomic content. This simple format treats all comments and submissions as independent docu-
ments without any structure or connection to the thread they appear in.

• Partial threads. This format assembles comments from the same thread into a structured, multi-
round dialogue between users. Submissions are left as separate documents. Assembled dialogues
are limited to a maximum parent depth, and the resulting documents are only snippets of a their
originating thread (which are spread across several documents).

• Full threads. This complex format combines a given submission and all of its child comments
into a single document encompassing an entire thread. Code-like indentation is used to indicate
the depth of a comment in the thread’s hierarchy.

We experimentally evaluated these strategies for assembling documents in Figure 14. We found that,
for language modeling purposes, treating comments and submissions as atomic units leads to better
downstream performance compared to partial and full threads. We hypothesize that the more complex
formatting required to handle dialogues might introduce undesirable content for language modeling,
such as short and repeated comments. We leave the study of better formatting for forum content for
language modeling to future work.

F Tokenization Analysis
The first step of processing text with LMs is tokenization, i.e., mapping the text to a sequence of tokens
with corresponding input embeddings (Sennrich et al., 2016; Kudo, 2018; Kudo and Richardson,
2018). Recently, there has been a growing interest in the question of how well LM tokenizers fit
different data sources (e.g., data in different languages; Ahia et al., 2023; Petrov et al., 2023) Inspired
by this emerging line of work, we conduct an explorative analysis of the GPTNeoX tokenizer (Black
et al., 2022) applied to Dolma, which provides a first picture of how challenging the different data
sources comprised by Dolma are for current LM tokenizers.

We start by taking a global look at the tokenizer’s fit to Dolma. Out of the 50,280 tokens in the
tokenizer vocabulary, 50,057 are present in the tokenized text of Dolma. In other words, 223 tokens
are never used, amounting to roughly 0.4% of the tokenizer vocabulary. The 223 tokens mostly
consist of combinations of whitespace characters (e.g., “\n\n ”, two newline characters followed by
two blank space characters). Note that when training an LM with the examined tokenizer on Dolma,
the input embeddings corresponding to these tokens would not be updated. In terms of the count
distribution of tokens, we find that tokens with smaller IDs tend to have higher counts in Dolma (see
Figure 15a), which is also reflected by a strong Spearman’s correlation between (i) the ranking of
tokens based on their counts in Dolma and (ii) the token IDs (r = 0.638, p < 0.001). Given how the
tokenizer was trained (Sennrich et al., 2016; Black et al., 2022), smaller IDs correspond to byte pairs
merged earlier and hence tokens occurring more frequently in the tokenizer training data Overall,
these results suggest a good fit of the GPTNeoX tokenizer to Dolma.

Does the tokenizer fit all data sources included in Dolma equally well? To examine this question, we
analyze fertility, which is defined as the average number of tokens per word generated by a tokenizer
(Acs, 2019; Scao et al., 2022), in our case measured on a specific data source. We find that fertility is
similar for most data sources, ranging between 1.15 (conversational forum subset) and 1.28 (books
subset), with the exception of the code subset, which has a substantially higher fertility of 2.45 (see
Figure 15b). This means that the costs of processing the code subset — be they computational or
financial in nature (Petrov et al., 2023) — are more than twice as high compared to the other data
sources.

What causes this discrepancy? We find that in the code subset (which mostly contains code), words
are often preceded by whitespace characters other than a blank space (e.g., newline, tab, return).
Crucially, while a blank space before a word is tokenized as part of that word (e.g., I love you
→ “I”, “ love”, “ you”), other whitespace characters yield separate tokens (e.g., I love you →
“I”, “\t”, “love”, “\t”, “you”). This can also be seen by plotting the relative frequency of tokens
representing whitespace characters by data source, which is one order of magnitude higher for The
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(a) Count analysis

(b) Fertility analysis (c) Whitespace analysis

Figure 15: Tokenization analysis. Tokens with small IDs, which have a high count in the tokenizer
training data, also tend to have a high count in Dolma (a). The Stack has a substantially higher fertility
compared to the other data sources (b), which can be explained by the higher relative frequency of
whitespace characters such “\n” and “\t” (c). See text for more details.

Stack compared to most other data sources (see Figure 15c). When training LMs on The Stack (or
code more generally), it thus might be advisable to add special tokens to the tokenizer (e.g., “\nif”;
Hong et al., 2021). It is important to notice that this observation applies to most tokenizers in use
today (e.g., the tokenizer used by GPT-4), which tend to lack tokens such as “\nif”.

G Evaluating Language Identification
To analyze the impact of the fastText language identification classifier, we ran an external audit on
the International Corpus of English (ICE) (Kirk and Nelson, 2018), a dataset containing spoken and
written English from nine countries around the world. We ran our language ID tool on all documents
in the ICE dataset to estimate how many documents from each region would have been erroneously
filtered. The ground truth in this analysis is that every document is in English, and should be classified
as such. Interestingly, we found that at our fairly permissive threshold (keeping documents with at
least a 0.5 score for English) correctly identified all English-language documents in ICE each as
English, no matter the region it was from.

H Evaluating Toxicity Classification
To measure dialectal biases in the jigsaw toxicity classifier, we analyze its proclivity to predict English
variations spoken in different countries as toxic. Starting with the unfiltered Reddit corpus, we create
a dataset of comments from location-based subreddits, filtering for country-specific subreddits with
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Figure 16: Percentage of English-language documents in the International Corpus of English
(ICE) (Kirk and Nelson, 2018) that would be misidentified as non-English as a result of thresh-
olding the fastText classifier’s predicted English score. We find a majority of English documents in
ICE remain identified as English even with a threshold of 0.90.

Figure 17: Distribution of Reddit comments labeled as toxic by English variation.

more than 50K comments. This dataset serves as a crude proxy for different dialects of English,
assuming most commenters live in the respective locations and speak the variation. We further
assume the fraction of actually toxic comments in each of these subreddits to be roughly the same.
We compute the toxicity score for each comment in this dataset using the jigsaw classifier and report
the percentage of comments marked as toxic against different classifier thresholds in Figure 17. For
all thresholds, for any two locations, we find <5% difference in the fraction of comments marked as
toxic suggesting little to no bias. Further, we plot the distribution of toxicity scores for comments in
each subreddit and find that scores assigned to the comments often fall at the extremes (close to 0 or
close to 1), suggesting that any reasonable threshold (lying between 0.1 to 0.9) to predict toxicity will
lead to similar outcomes.

I Analysis of Filters for Code Pipeline
In Table 7, we display the number of documents flagged by our two groups of filters for The Stack, as
well as their correlation. We find that the RedPajama v1 filters flag significantly more documents than
the StarCoder ones for most languages. However, for Java, JavaScript and Python, our filters derived
from StarCoder flag a very large number of documents. This is because it contains an additional Code

48



to Text ratio filter that is not employed for other languages. The two groups of filters generally have
low correlation with the exception of a few languages, such as txl where they are perfectly correlated.

Language RPJ % SC % RPJ SC Language RPJ % SC % RPJ SC
Flag Flag Corr. Flag Flag Corr.

abap 1.4 0.0 N/A lookml 0.0 0.0 N/A
actionscript 1.3 0.0 N/A lsl 3.2 1.3 0.05
ada 1.5 2.6 -0.02 lua 4.6 0.0 N/A
agda 25.4 0.0 N/A m 35.1 0.0 N/A
ags-script 4.7 0.0 N/A m4 2.7 0.1 0.003
alloy 3.5 0.1 -0.005 makefile 2.3 0.0 N/A
ampl 24.0 0.0 N/A mako 2.3 0.7 -0.013
antlr 6.0 0.0 N/A maple 18.2 44.2 -0.414
apacheconf 0.5 0.0 N/A markdown 8.0 0.0 N/A
api-blueprint 3.8 0.0 N/A mask 16.6 0.0 N/A
apl 28.2 0.0 N/A mathematica 66.3 0.0 N/A
applescript 2.1 0.0 N/A matlab 94.7 0.0 N/A
arc 17.7 8.8 -0.144 max 91.2 0.1 -0.033
arduino 2.5 0.0 N/A maxscript 4.0 0.5 -0.014
asciidoc 4.0 0.0 N/A mediawiki 6.6 0.0 N/A
asp 16.4 0.1 -0.01 metal 5.4 0.0 N/A
aspectj 0.9 0.0 N/A mirah 25.3 0.0 N/A
assembly 50.1 0.0 N/A modelica 10.3 0.0 N/A
ats 5.3 0.0 N/A mms 3.2 0.0 N/A
augeas 7.2 4.8 -0.063 monkey 6.5 0.0 N/A
autohotkey 4.9 0.0 N/A moonscript 5.1 0.0 N/A
autoit 3.0 0.0 N/A mtml 4.5 2.1 -0.031
awk 36.4 0.1 -0.02 muf 18.9 0.0 N/A
batchfile 9.8 0.0 N/A mupad 13.8 1.7 0.006
befunge 100.0 0.0 N/A myghty 27.3 0.0 N/A
bison 2.8 0.0 N/A nesc 7.9 0.0 N/A
bitbake 0.9 0.0 N/A netlinx 15.4 0.0 N/A
blitzbasic 56.6 0.0 N/A netlogo 12.5 0.0 N/A
blitzmax 1.2 0.0 N/A nginx 0.0 0.0 N/A
bluespec 2.8 0.0 N/A nimrod 4.5 0.0 N/A
boo 10.3 0.3 0.136 ninja 36.8 0.0 N/A
brainfuck 73.8 0.3 -0.003 nit 3.4 0.0 N/A
brightscript 2.8 0.0 N/A nix 1.6 0.0 N/A
bro 3.3 0.0 N/A nsis 3.0 0.0 N/A
c 3.7 0.0 N/A nu 15.1 0.0 N/A
c++ 5.6 0.0 N/A numpy 0.0 0.0 N/A
c-sharp 0.5 0.0 N/A objdump 77.5 0.0 N/A
c2hs-haskell 1.7 0.0 N/A objective-c++ 5.6 0.1 0.023
cap’n-proto 4.7 0.0 N/A objective-j 48.7 0.0 N/A
cartocss 15.9 0.2 -0.021 ocaml 7.8 0.0 N/A
ceylon 2.1 0.0 N/A octave 61.2 3.0 -0.22
chapel 20.4 0.0 N/A omgrofl 0.0 0.0 N/A
chuck 13.0 0.0 N/A ooc 4.3 0.0 N/A
cirru 31.0 0.0 N/A opa 0.3 0.0 N/A
clarion 0.6 0.0 N/A opal 11.4 1.9 -0.05
clean 12.0 0.5 -0.026 opencl 14.6 0.0 N/A
click 17.8 0.3 -0.024 openscad 31.4 0.0 N/A
clips 13.9 0.1 -0.01 org 11.1 0.1 0.002
clojure 4.7 0.0 N/A ox 43.6 8.4 0.315
cmake 2.0 0.0 N/A oxygene 0.0 94.5 N/A
cobol 9.8 0.3 -0.017 oz 8.4 0.2 -0.012
coffeescript 4.0 0.0 N/A pan 1.8 18.0 0.095
coldfusion 2.5 1.2 -0.014 papyrus 10.8 0.1 0.01
coldfusion-cfc 1.1 0.0 N/A parrot 20.0 0.0 N/A
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common-lisp 6.4 0.0 N/A parrot-assembly 6.0 0.0 N/A
component-pascal 37.1 84.1 0.144 pir 8.4 0.0 N/A
coq 17.5 0.0 N/A pascal 2.5 0.0 N/A
creole 41.8 0.0 N/A pawn 13.3 0.0 N/A
crystal 2.8 0.1 -0.006 perl 7.8 0.1 0.022
csound 6.7 3.9 -0.041 perl6 15.3 0.0 N/A
css 10.9 0.0 N/A php 2.1 0.0 N/A
csv 87.2 0.0 N/A piglatin 5.5 0.0 N/A
cucumber 2.3 0.8 0.41 pike 11.9 0.0 N/A
cuda 2.6 0.0 N/A pod 3.0 0.0 N/A
cycript 25.3 0.0 N/A pogoscript 2.2 0.0 N/A
cython 2.0 0.0 N/A pony 18.5 0.0 N/A
d 15.5 7.0 0.008 postscript 44.8 0.0 N/A
darcs-patch 3.0 0.0 N/A pov-ray-sdl 36.7 0.0 N/A
dart 0.9 0.0 N/A powershell 2.0 0.0 N/A
desktop 0.8 0.0 N/A processing 12.0 0.0 N/A
diff 11.5 0.0 N/A prolog 20.2 0.0 N/A
dcl 42.4 0.2 -0.005 propeller-spin 9.7 0.0 N/A
dm 7.7 0.0 N/A protocol-buffer 1.2 0.0 N/A
dns-zone 56.4 0.0 N/A pure-data 79.8 0.1 -0.035
dockerfile 1.5 0.0 N/A purebasic 61.9 0.0 N/A
dogescript 3.3 0.0 N/A purescript 2.0 0.0 N/A
dylan 1.5 0.0 N/A python 2.9 26.3 0.091
eagle 82.8 40.1 0.076 pt 33.3 0.0 N/A
ec 10.1 0.2 -0.014 qmake 4.1 0.0 N/A
ecere-projects 4.9 0.0 N/A qml 1.2 0.0 N/A
ecl 4.3 0.0 N/A r 11.2 0.1 -0.002
edn 36.9 0.0 N/A racket 6.4 0.0 N/A
eiffel 22.4 0.0 N/A rirh 11.9 0.1 -0.009
elixir 1.5 0.0 N/A raml 2.7 0.0 N/A
elm 3.7 0.0 N/A rdoc 1.8 0.0 N/A
emacs-lisp 9.1 0.0 N/A realbasic 0.9 0.0 N/A
emberscript 9.1 1.1 -0.016 rebol 20.3 0.1 -0.018
erlang 5.2 0.0 N/A red 14.3 0.2 -0.02
f-sharp 5.1 0.0 N/A redcode 20.9 0.0 N/A
factor 7.7 0.0 N/A ren’py 2.3 0.0 N/A
fancy 9.9 0.0 N/A renderscript 16.1 0.0 N/A
fantom 5.2 0.1 -0.006 rt 2.7 0.2 -0.002
fish 2.4 0.0 N/A rhtml 4.2 0.6 0.001
flux 35.9 0.0 N/A rmarkdown 8.1 0.0 N/A
forth 11.2 0.0 N/A rf 0.8 0.2 0.117
fortran 15.4 0.0 N/A rouge 14.8 0.0 N/A
freemarker 3.2 2.8 0.035 ruby 1.2 0.0 N/A
g-code 43.7 0.1 -0.004 rust 2.6 0.1 -0.004
gams 53.9 0.0 N/A sage 32.1 0.0 N/A
gap 20.7 0.0 N/A saltstack 1.9 0.0 N/A
gas 17.6 0.0 N/A sas 20.3 0.0 N/A
gdscript 0.7 0.0 N/A sass 2.9 0.0 N/A
genshi 9.0 12.3 -0.092 scala 1.6 0.0 N/A
gentoo-ebuild 0.3 0.0 N/A scaml 5.3 0.0 N/A
gentoo-eclass 0.5 0.0 N/A scheme 15.4 5.6 0.011
gettext-catalog 1.3 0.0 N/A scilab 32.1 0.7 -0.058
glsl 9.4 0.5 -0.015 scss 4.5 0.0 N/A
glyph 0.0 0.0 N/A self 5.9 0.0 N/A
gnuplot 68.9 0.1 -0.041 shell 5.3 0.0 N/A
go 2.0 0.0 N/A shellsession 30.0 0.0 N/A
golo 1.7 0.0 N/A shen 16.3 0.0 N/A
gosu 3.1 42.5 -0.153 slash 40.8 0.0 N/A
grace 34.5 0.0 N/A slim 2.3 0.0 N/A
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gf 11.0 0.0 N/A smali 1.0 0.0 N/A
graphql 1.6 0.0 N/A smalltalk 1.6 0.1 0.195
graphviz-(dot) 43.1 0.0 N/A smarty 4.4 0.8 0.001
groff 19.9 0.6 0.009 smt 34.8 0.0 N/A
groovy 0.9 0.0 N/A solidity 13.7 0.0 N/A
gsp 2.5 0.2 0.001 sourcepawn 13.5 0.0 N/A
haml 2.3 0.0 N/A sparql 10.1 0.0 N/A
handlebars 4.9 0.1 0.031 sqf 3.3 0.0 N/A
harbour 5.6 0.0 N/A sql 11.0 0.0 N/A
haskell 3.4 0.0 N/A squirrel 7.3 0.0 N/A
haxe 1.1 0.0 N/A stan 15.2 0.0 N/A
hcl 1.3 0.0 N/A standard-ml 49.8 0.1 0.008
hlsl 3.8 0.0 N/A stata 8.2 6.1 -0.073
html 22.5 1.9 0.082 ston 11.9 0.0 N/A
html+django 5.9 1.0 0.001 stylus 3.3 0.0 N/A
html+eex 4.7 0.6 0.019 supercollider 33.4 1.6 -0.066
html+erb 4.0 0.4 0.006 svg 92.5 49.0 -0.14
html+php 3.4 0.1 0.002 swift 0.6 0.0 N/A
http 4.3 0.0 N/A systemverilog 4.9 0.0 N/A
hy 9.5 0.0 N/A tcl 7.4 0.0 N/A
idl 74.2 0.0 N/A tcsh 6.3 0.0 N/A
idris 4.1 0.0 N/A tea 5.2 0.0 N/A
igor-pro 2.5 0.0 N/A tex 18.6 0.0 N/A
inform-7 14.0 0.2 -0.019 text 56.5 0.6 0.061
ini 8.3 0.9 0.027 textile 8.2 0.0 N/A
inno-setup 2.4 0.0 N/A thrift 1.2 0.0 N/A
io 18.9 0.1 0.012 toml 11.9 0.0 N/A
ioke 13.4 0.0 N/A turing 4.3 0.0 N/A
irc-log 39.6 0.0 N/A turtle 25.1 0.0 N/A
isabelle 3.6 0.1 -0.007 twig 2.7 0.2 0.013
j 27.0 0.0 N/A txl 7.4 7.4 1.0
jade 2.5 0.0 N/A typescript 2.2 0.1 0.02
jasmin 20.0 0.0 N/A upc 12.3 0.0 N/A
java 0.7 30.2 0.037 unity3d-asset 1.1 0.1 0.003
jsp 1.4 0.6 -0.003 uno 0.8 0.0 N/A
javascript 9.3 52.1 0.13 unrealscript 2.6 0.0 N/A
jflex 2.6 0.3 0.333 urweb 19.2 1.7 -0.064
json 44.8 0.0 N/A vala 1.4 0.0 N/A
json5 20.8 0.0 N/A vcl 6.8 0.0 N/A
jsoniq 29.5 0.0 N/A verilog 1.8 0.0 N/A
jsonld 11.6 0.0 N/A vhdl 4.1 0.0 N/A
jsx 2.4 0.0 N/A viml 2.6 0.0 N/A
julia 8.6 0.0 N/A visual-basic 4.3 0.1 0.07
jupyter-notebook 62.5 0.0 N/A volt 2.4 0.1 -0.005
kicad 98.2 0.0 N/A vue 3.0 0.0 N/A
kit 6.3 0.3 0.041 owl 10.4 85.6 -0.146
kotlin 0.7 0.0 N/A webassembly 30.3 0.0 N/A
krl 2.7 0.0 N/A webidl 0.3 0.0 N/A
labview 39.0 100.0 0.017 wisp 13.8 0.0 N/A
lasso 33.5 4.4 -0.001 x10 8.9 1.0 -0.031
latte 4.9 0.4 0.034 xbase 2.5 0.5 -0.011
lean 8.2 0.0 N/A xc 14.2 0.0 N/A
less 4.7 0.0 N/A xml 13.5 65.3 -0.016
lex 31.8 0.2 -0.02 xojo 2.3 0.0 N/A
lfe 10.2 0.0 N/A xpages 0.0 95.6 N/A
lilypond 37.1 0.0 N/A xproc 9.9 59.5 -0.375
linker-script 10.2 0.0 N/A xquery 9.1 4.4 -0.065
liquid 9.6 0.6 0.074 xs 1.6 5.9 -0.032
literate-agda 23.4 0.0 N/A xslt 2.2 85.1 -0.041
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lcs 1.3 0.0 N/A xtend 0.3 0.0 N/A
literate-haskell 3.8 0.0 N/A yacc 17.5 0.0 N/A
livescript 12.8 0.0 N/A yaml 5.1 0.0 N/A
llvm 29.9 0.0 N/A yang 0.7 0.0 N/A
logos 24.2 0.2 -0.023 zephir 0.4 0.0 N/A
logtalk 4.3 0.0 N/A zig 4.8 0.0 N/A
lolcode 14.4 4.8 -0.092 zimpl 75.5 0.0 N/A

Table 7: Correlation of filters for the subset of Dolma from The Stack. RPJ are fil-
ters from RedPajama (Together Computer, 2023c) and SC filters are from StarCoder (Li
et al., 2023; Muennighoff et al., 2023a). We compute the Pearson correlation among the
documents flagged by each set of filters (Corr.). Language shortcuts: dcl=digital-command-
language, gf=grammatical-framework, gsp=groovy-server-pages, jsp=java-server-pages, lcs=literate-
coffeescript, owl=web-ontology-language, mms=module-management-system, pir=parrot-internal-
representation, pt=python-traceback, rf=robotframework, rirh=ragel-in-ruby-host, rt=restructuredtext,
upc=unified-parallel-c

J Data Sheet

J.1 Motivation for Dataset Creation

Why was the dataset created?

Dolma was created with the primary purpose of training AI2’s autoregressive language model OLMo.
It is a mixture of documents from multiple data sources. Documents have been transformed using a
combination of rule-based and statistical tools to extract textual content, remove layout information,
and filter for English content.

Dolma contains data sourced from different domains. In particular, it contains a mixture of text
obtained from a web scrape, scientific content extracted from academic PDFs and its associated
metadata, code over a variety of programming languages, reference material from Wikipedia and
Wikibooks, as well as public domain books from Project Gutenberg.

What (other) tasks could the dataset be used for?

We expect this dataset to be useful to train other language models, either in its current form or through
further filtering and combining it with other datasets.

Beside language model training, this dataset could be used to study interaction between pretraining
corpora and models trained on them. For example, one could study provenance of generations from
the model, or perform further corpus analysis.

Specific subset of Dolma could be used to train domain specific models. For example, the code subset
could be used to train an AI programming assistant.

Are there obvious tasks for which it should not be used?

Due to the myriad transformations applied to the original source materials to derive our dataset, we
believe it is ill-suited as a replacement for users seeking to directly consume the original content.
We refer users of our dataset to our license and terms on the HuggingFace Hub huggingface.co/
datasets/allenai/dolma which detail any use restrictions.

Has the dataset been used for any tasks already?

No model trained on this dataset has been publicly released yet.

If so, where are the results so others can compare?

A manuscript is forthcoming.

Who funded the creation of the dataset?
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All individuals who are responsible for this dataset are employed by the Allen Institute for AI.
Similarly, computing resources are provided by AI2.

If there is an associated grant, provide the grant number.

Compute for the OLMo project is provided by AMD and CSC, using GPUs on the LUMI supercom-
puter.

J.2 Dataset Composition

What are the instances? Are there multiple types of instances?

Instances are plain-text spans on English text or computer code. Each instance was obtained by
processing web pages (which might include news, documents, forums, etc), academic articles,
computer code from GitHub, encyclopedic content from Wikipedia, or Project Gutenberg books.

Are relationships between instances made explicit in the data?

Metadata for subsets of Dolma could be used to reconstruct relationships between items:

• Common Crawl. Each document uses the URL of the web page from which it was extracted as its
identifier; therefore, it can be used to identify relationships between documents.

• C4. The URL of each web page from which documents were extracted is included as metadata;
therefore, it can be used to identify relationships between documents.

• Reddit. The originating subreddits and thread ids of documents are included in the metadata.
• peS2o. The id of each document is the Semantic Scholar Corpus ID of its corresponding manuscript.

Metadata for each manuscript can be obtained using the Semantic Scholar APIs (Kinney et al.,
2023).

• The Stack. The name of the GitHub repository each document belongs to is included as metadata.
• Project Gutenberg. The title of each book is included as the first line of each document.
• Wikipedia, Wikibooks. For both, metadata includes the URL corresponding to the page content

was extracted from. Structure and connections between documents can be recovered through the
URL.

How many instances of each type are there?

Summary statistics are reported in Table 1.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)?
Features/attributes?

For each source, raw data is not available directly but could be recovered using source-specific
methods:

• Common Crawl. We obtain data from common crawl snapshots from 2020-05 to 2023-06. WARC
files from Common Crawl can be intersected with Dolma ids to recover original HTML files.

• C4. We obtained this corpus from the HuggingFace Hub 33. In turn, documents in C4 have been
derived from a Common Crawl snapshot for 04/2019. URLs in C4 can be used to recover HTML
files.

• Reddit. The complete set of monthly data dumps used in this work are no longer distributed by
Pushshift, however they can still be obtained through torrents and some public web archives.

• peS2o. peS2o is derived from S2ORC Lo et al. (2020). Original parsed documents can be obtained
from extracting documents in S2ORC that share the same ID with peS2o. Further, metadata in
S2ORC can be used to obtain original PDF.

• The Stack (deduplicated). The filename and repository name, both available in metadata, can be
used to recover original file contents.
33
https://huggingface.co/datasets/allenai/c4
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• Project Gutenberg. The title of each book is the first line of each document.
• Wikipedia, Wikibooks. For both, metadata includes the URL corresponding to the page content

was extracted from. Structure and connections between documents can be recovered through the
URL.

Is there a label/target associated with instances? If the instances are related to people, are
subpopulations identified (e.g., by age, gender, etc.) and what is their distribution?

There are no labels associated with instances. Many text instances were likely created by people or
groups of people, but in the vast majority of cases authorship information is unavailable let alone
subpopulation metadata. we leave aggregation and reporting of these statistics to future work.

Is everything included or does the data rely on external resources? (e.g., websites, tweets,
datasets) If external resources, a) are there guarantees that they will exist, and remain constant,
over time; b) is there an official archival version. Are there licenses, fees or rights associated
with any of the data?

The data are derived from the web and the original resources may not persist over time. However,
each source represents an archival snapshot of that data that should remain fixed and available:

• Common Crawl. The Common Crawl data is available on Amazon S3 as part of the Amazon
Web Services’ Open Data Sponsorship program and can be freely downloaded 34. We followed
Common Crawl terms of use35.

• C4. This corpus can be obtained from from the HuggingFace Hub33 and is released under ODC-By
1.0 (Open Data Commons, 2010).

• Reddit. Pushshift no longer distributes this dataset due to changes to the Reddit API’s terms.
Unofficial copies of the data might be be available through torrents and some public web archives.
Pushshift data dumps inherit36 the Terms of use of the Reddit API at the time of their collection
(March 2023).

• peS2o. peS2o is derived from S2ORC Lo et al. (2020). S2ORC is released through the Semantic
Scholar Public API37 under ODC-By 1.0 (Open Data Commons, 2010).

• The Stack (deduplicated). The corpus is available on the HuggingFace Hub 38 and consists of
code released under a variety of permissive licenses. More details including terms of use for
hosting or sharing the corpus are provided in the datacard at the link above.

• Project Gutenberg. Project Gutenberg consists of books that are not protected under U.S.
copyright law. The corpus is available at gutenberg.org.

• Wikipedia, Wikibooks. Wikimedia data dumps are freely available39 and released under CC
BY-SA 4.0 license (Creative Commons, 2013).

Are there recommended data splits or evaluation measures? (e.g., training, development,
testing; accuracy/AUC)

No. A separate evaluation suite Dolma as been decontaminated against will be released at a later date.
Downstream users of this dataset could use any alternative evaluation suite.

What experiments were initially run on this dataset? Have a summary of those results and, if
available, provide the link to a paper with more information here.

A forthcoming manuscript will detail ablations and other experiments that have been conducted to
guide the creation of this dataset.

34
https://commoncrawl.org/the-data/get-started/

35
https://commoncrawl.org/terms-of-use/

36
https://www.reddit.com/r/pushshift/comments/d6luj5/comment/f0ugpqp

37
https://www.semanticscholar.org/product/api

38
https://huggingface.co/datasets/bigcode/the-stack-dedup

39
https://dumps.wikimedia.org
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J.3 Data Collection Process

How was the data collected? (e.g., hardware apparatus/sensor, manual human curation,
software program, software interface/API; how were these constructs/measures/methods vali-
dated?)

Data acquisition for each subset was performed as follows:

• Common Crawl. snapshots were downloaded from Common Crawl’s official S3 bucket40 using
the cc_net pipeline (Wenzek et al., 2020b). Data was obtained between March 17th and March
27th, 2023.

• C4. We clone C4 from the HuggingFace Hub33 using Git with the Git-LFS extension. Repository
cloned on May 24th, 2023.

• Reddit. Reddit was acquired in the form of monthly data dumps of comments and submissions
collected and distributed by the Pushshift project41 42. We used the complete set of 422 publicly
availible dumps (208 comments, 214 submissions) spanning a period from 06/2005–03/2023. The
majority of Dumps were acquired in March, 2023 with the last dumps downloaded in May of 2023.

• peS2o. We clone peS2o from the HuggingFace Hub43 using Git with the Git-LFS extension. We
use pes2o V2. Repository cloned on June 30th, 2023.

• The Stack (deduplicated). We clone The Stack (deduplicated) from the HuggingFace Hub38 using
Git with the Git-LFS extension. Repository cloned on May 28th, 2023.

• Project Gutenberg. Data was downloaded directly from gutenberg.org. We used
GutenbergPy (Angelescu, Radu, 2013) to extract books. Website accessed on April 3rd, 2023.

• Wikipedia, Wikibooks. Dumps were downloaded from Wikimedia’s website39. We use the dump
from March 20th, 2023.

Who was involved in the data collection process? (e.g., students, crowdworkers) How were they
compensated? (e.g., how much were crowdworkers paid?)

Data was collected and postprocessed by full-time employees at the Allen Institute for AI. No
instances in this dataset are manually annotated.

Over what time-frame was the data collected? Does the collection time-frame match the
creation time-frame?

Please see list above.

How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part of speech tags; model-based guesses for age or
language)? If the latter two, were they validated/verified and if so how?

Any metadata associated with each instance was obtained directly from each source.

Does the dataset contain all possible instances? Or is it, for instance, a sample (not necessarily
random) from a larger set of instances? If the dataset is a sample, then what is the population?
What was the sampling strategy (e.g., deterministic, probabilistic with specific sampling proba-
bilities)? Is the sample representative of the larger set (e.g., geographic coverage)? If not, why
not (e.g., to cover a more diverse range of instances)? How does this affect possible uses?

Sampling for each subset was performed as follows:

40
s3://commoncrawl/

41
https://files.pushshift.io/reddit/submissions/

42
https://files.pushshift.io/reddit/comments/

43
https://huggingface.co/datasets/allenai/peS2o
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• Common Crawl. Common Crawl is not a representative sample of the web. Summary statistics
about Common Crawl are reported through the cc-crawl-statistics (Common Crawl, 2016)
project, available at commoncrawl.github.io/cc-crawl-statistics. Dolma uses Common
Crawl snapshots from 2020-05 to 2023-06

44.
• C4. We use C4 in its entirety.
• Reddit. We use all available Reddit content from from 06/2005–03/2023.
• The Stack (deduplicated). We use The Stack (deduplicated) in its entirety.
• peS2o. We use pes2o V2 in its entirety.
• Project Gutenberg. We process all Gutenberg books.
• Wikipedia, Wikibooks. We use the English and Simple subset of Wikipedia and Wikibooks in

their entirety.

Is there information missing from the dataset and why? (this does not include intentionally
dropped instances; it might include, e.g., redacted text, withheld documents) Is this data missing
because it was unavailable?

Common Crawl is the only source we did not use in its entirety. We use only about a quarter of all
snapshots available. This amount was deemed sufficient for the goal of the OLMo project (train an
autoregressive language model with up to 70 billion parameters) given the amount of compute we
have available. We decided to use the 24 most recent Common Crawl snapshots.

Are there any known errors, sources of noise, or redundancies in the data?

Not that we are aware of, although a negligible portion of Common Crawl data could have been
lost due to network issues with S3 storage. When accessing Common Crawl, we implemented retry
mechanisms, but copy could have failed due to exceeding the retry limits.

J.4 Data Preprocessing

What preprocessing/cleaning was done? (e.g., discretization or bucketing, tokenization, part-
of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values,
etc.)

All data sources are filtered using FastText language identification models (Joulin et al., 2016a,b)
with an English threshold of 0.5.

For the Common Crawl and C4 subsets, we use the following filters (Figure 1) that substantially
modify the original data. Note that data might be tagged for removal by one or more filter.

• Only Common Crawl, as part of their distribution pipeline: Linearize all HTML into plain text
files (WET files generation45);

• Only Common Crawl, as part of CCNet pipeline: We remove frequently occurring paragraph
in Common Crawl by identifying repeated paragraphs on small subsets of each snapshots. This
step gets rid of headers that are shared across many pages, such as navigational headers. Removal
is operationalized as follows: given 1 . . . , n, . . . , N shards each snapshot is comprised to, group
shards in sets S = {n − k, n}; then, remove exact duplicates of paragraphs in S. Paragraphs are
defined as newline-separated slices of documents, and compared using their SHA1. We choose k

such that each set is at most 20GB46. (approximately 70% of paragraph removed);
• Only Common Crawl, deduplication by URL: We deduplicate pages by URL (53% of duplicates

removed);
44Common Crawl snapshots follow naming convention xxxx-yy, where xxxx is the year the snapshot was

finalized, and yy is the week, ranging from 01 to 52.
45
https://commoncrawl.org/get-started

46This is a slight modification of the original CCNet pipeline, where k is chose so that each set is 2% of
snapshot. We chose to use a fixed shard size, rather an a percentage of the corpus, because fixed size is more
predictable in terms of resource usage, leading to less-error prone code. Conceptually it’s equivalent to putting a
threshold on the absolute probability of a paragraph occurring

56

https://commoncrawl.github.io/cc-crawl-statistics/
https://commoncrawl.org/get-started


• Language identification: remove all documents with an English score lower than 0.5, as deter-
mined by FastText language identification models (Joulin et al., 2016a,b) (removed 61.69% of web
pages by size);

• Quality filter47: Remove documents with more than half of their line not ending in “.”, “?”, “!”,
or “"”. (22.73% of characters tagged for removal);

• Quality filter47: Remove any document that does not pass any of the Gopher rules (Rae et al.,
2021) (15.23% of characters tagged for removal);

– Fraction of characters in most common ngram greater than a threshold48

– Fraction of characters in duplicate ngrams greater than a threshold49

– Contains fewer than 50 or more than 100K words
– Median word length is less than 3 or greater than 10
– Symbol to word ratio greater than 0.10
– Fraction of words with alpha character less than 0.80

– Contains fewer than 2 of a set of required words50

– Fraction of lines in document starting with bullet point greater than 0.90
– Fraction of lines in document ending with ellipsis greater than 0.30
– Fraction of lines in document that are duplicated greater than 0.30
– Fraction of characters in duplicated lines greater than 0.30

• Quality filter47: Remove any document that contains a token or sequence of tokens repeating over
100 times51 (0.003% of characters tagged for removal);

• Content filter: Remove sentences that get ranked as toxic by a FastText classifier (score above
0.4). We train a bigram classifier on the Jigsaw dataset (cjadams et al., 2017) (1.01% of data
tagged for removal);

• Content filter: Mask Personal Identifiable Information (PII) using regular expressions that identify
emails, phone numbers, and IP addresses; pages containing 6 or more PIIs are completely removed
from the corpus (0.05% tagged for masking, 0.11% tagged for removal);

• Exact document deduplication: duplicate documents the same text. No punctuation or whitespace
is removed. Empty documents count as duplicates (14.9% of documents tagged for removal).

• Only Common Crawl, deduplication by paragraph: We deduplicate the web subset at a paragraph
level using a Bloom filter (19.1% of UTF-8 characters tagged for removal).

For the Reddit subset, we use the following filters that substantially reduce the original data.

• Language identification: remove all documents with an English score lower than 0.5, as deter-
mined by a FastText language identification model.

• Quality filter47: Remove comments and submissions shorter than 500 characters in length.

• Quality filter47: Remove user comments with fewer than three upvotes (Reddit users vote on the
quality of submissions and comments).

• Content filter47: Remove comments and submissions from banned, toxic, or NSFW subreddits.

• Content filter47: Remove sentences that get ranked as toxic or as hatespeech by a FastText
classifier (score above 0.4).

47The term “quality filter”, while widely used in literature, does not appropriately describe the outcome of
filtering a dataset. Quality might be perceived as a comment on the informativeness, comprehensiveness, or
other characteristics valued by humans. However, the filters used in Dolma and other language models efforts
select text according to criteria that are inherently ideological (Gururangan et al., 2022).

48For bigrams, threshold of 0.20. For trigrams, 0.18. For 4-grams, 0.16.
49For 5-grams, 0.15. For 6-grams, 0.14. For 7-grams, 0.13. For 8-grams, 0.12. For 9-grams, 0.11. For

10-grams, 0.10.
50“the”, “be”, “to”, “of”, “and”, “that”, “have”, “with”
51We use allenai/gpt-neox-olmo-dolma-v1_5 to obtain tokens.
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• Content filter: Mask Personal Identifiable Information (PII) using regular expressions that identify
emails, phone numbers, and IP addresses

• Deduplication: We deduplicate comments and submissions (jointly) at a paragraph level using a
Bloom filter.

For the code subset derived from The Stack (deduplicated), we use the following filters (Figure 8):

• Language filter: Removed files associated with the following programming languages:
– Data or numerical content: csv, json, json5, jsonld, jsoniq, svg
– Assembly code: assembly

• Quality filter47: Removed copyright statements in code files from document preamble52;

• Quality filter47: Removed documents matching any of the RedPajama v1 (Together Computer,
2023c) code filters (41.49% of data tagged for removal):

– Maximum line length > 1000 characters.
– Average line length > 100 characters.
– Proportion of alpha-numeric characters < 0.25.
– Ratio of alphabetical characters to number of tokens < 1.553.

• Quality filter47: Removed documents matching any of the following Starcoder filters (Li et al.,
2023):

– Contains XML template code.
– HTML code-to-text ratio <= 0.2.
– Java, Javascript, Python code-to-comment ratio <= 0.01 or > 0.8.

• Content filter: Mask Personal Identifiable Information (PII) using regular expressions that identify
emails, phone numbers, and IP addresses; pages containing 6 or more PIIs are completely removed
from the corpus.

For the Wikipedia and Wikibooks subsets, we remove pages that contain fewer than 25 UTF-8
words.

For the Gutenberg subset:

• Language identification: for each paragraph (defined as newline-separated spans of text), we
use FastText to perform language identification. Then, we compute the average language score
by averaging the score for all passages. If a document has a language score lower than 0.5, it is
discarded;

• Quality filter47: we remove pages that contain fewer than 25 UTF-8 words;

• Quality filter47: Remove any document that contains a token or sequence of tokens repeating over
100 times51.

For the PeS2o subset, we remove any document that contains a token or sequence of tokens repeating
over 100 times51 .

For Dolma versions 1.0 and 1.5, we perform decontamination for all subsets of Dolma. In particular,
we remove paragraphs that are shared with documents in the Paloma evaluation suite Magnusson et al.
(2023). Overall, only 0.003% of our dataset is removed due to contamination with this evaluation set.
Dolma version 1.6 is not decontaminated.

Was the “raw” data saved in addition to the preprocessed/cleaned data? (e.g., to support
unanticipated future uses)

Raw data is available for all subsets except Common Crawl. Due to space constrains, we only keep
linearized version of Common Crawl snapshots, filtered by Language ID as described above.

Raw data is not available for download outside the Allen Institute for AI. Interested individuals may
contact authors of this manuscript if they require access to raw data.

52Code license and provenance is still tracked in metadata.
53Tokens counted using whitespace tokenizer
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Is the preprocessing software available?

Yes, all preprocessing software is available on GitHub at github.com/allenai/dolma and on
PyPI54.

Does this dataset collection/processing procedure achieve the motivation for creating the dataset
stated in the first section of this datasheet?

Yes, it does.

J.5 Dataset Distribution

How is the dataset distributed? (e.g., website, API, etc.; does the data have a DOI; is it archived
redundantly?)

Dolma is distributed via the HuggingFace Hub, which offers access via the datasets (Lhoest et al.,
2021) Python package, direct download, and Git using the Git-LFS extension. Additionally, a copy is
stored on the cloud storage of the Allen Institute for AI.

When will the dataset be released/first distributed? (Is there a canonical paper/reference for
this dataset?)

The dataset is available now. This manuscript serves as a reference for the dataset.

What license (if any) is it distributed under? Are there any copyrights on the data?

Information about the license associated with Dolma are available on its release page on the Hugging-
Face Hub: huggingface.co/datasets/allenai/dolma.

Are there any fees or access/export restrictions?

The dataset is distributed for free. Users should verify any restrictions on its release page on the
HuggingFace Hub: huggingface.co/datasets/allenai/dolma.

J.6 Dataset Maintenance

Who is supporting/hosting/maintaining the dataset? How does one contact the
owner/curator/manager of the dataset (e.g. email address, or other contact info)?

The Allen Institute for AI maintains the dataset. For support questions, users are invited to open an
issue on GitHub55 or on the community tab of dataset page56 (the former being preferred over the
latter). Any other inquiry should be sent to ai2-info@allenai.org.

Will the dataset be updated? How often and by whom? How will updates/revisions be docu-
mented and communicated (e.g., mailing list, GitHub)? Is there an erratum?

Dataset will be uploaded on a need-to basis by maintainers at the Allen Institute for AI. Newer version
of the dataset will be labeled accordingly. The latest version of the dataset, as well as a changelog,
will be made available starting from the first revision.

If the dataset becomes obsolete how will this be communicated? Is there a repository to link to
any/all papers/systems that use this dataset?

Users should keep track of the version of the dataset in use. Information about latest version of Dolma
are available on its release page on the HuggingFace Hub: huggingface.co/datasets/allenai/
dolma. Dolma users should cite this manuscript when using this data.

54
https://pypi.org/project/dolma/

55
https://github.com/allenai/dolma/issues

56
https://huggingface.co/datasets/allenai/dolma/discussions
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If others want to extend/augment/build on this dataset, is there a mechanism for them to do so?
If so, is there a process for tracking/assessing the quality of those contributions. What is the
process for communicating/distributing these contributions to users?

Creation and distribution of derivatives is described above. In case contributors want to flow their
improvement back to future Dolma releases, they should contact corresponding authors of this
manuscript.

J.7 Legal & Ethical Considerations

If the dataset relates to people (e.g., their attributes) or was generated by people, were they
informed about the data collection? (e.g., datasets that collect writing, photos, interactions,
transactions, etc.)

Subsets of Dolma derived from web data are likely created by people or groups of people, however
authorship information is often unavailable.

Authors were not directly informed about the data collection. For encyclopedic and web content, logs
of web servers will contain records of spiders ran by Common Crawl. For academic content, the
pes2o subset (Soldaini and Lo, 2023) is derived from manuscripts that are licensed for permissive
distribution by their authors. Reddit content was acquired through a public API adherent to terms of
service; individual authors of Reddit posts were not contacted directly. Finally, the Allen Institute for
AI did not contact Project Gutenberg.

If it relates to other ethically protected subjects, have appropriate obligations been met? (e.g.,
medical data might include information collected from animals)

Due to the nature of and size of Dolma, it is impossible to determine which obligations, if any, are
appropriate.

If it relates to people, were there any ethical review applications/reviews/approvals? (e.g.
Institutional Review Board applications) If it relates to people, were they told what the dataset
would be used for and did they consent? What community norms exist for data collected from
human communications? If consent was obtained, how? Were the people provided with any
mechanism to revoke their consent in the future or for certain uses?

The OLMo project includes Ethics committee comprised of internal and external members to the
Allen Institute for AI. Plans for the creation of Dolma were reviewed with the committee, and we
incorporated their recommendations.

Following practices established in similar efforts, no consent was collected from individuals who
might be represented in the dataset. We make available a form57 for individuals who wish to be
removed from the dataset.

If it relates to people, could this dataset expose people to harm or legal action? (e.g., financial
social or otherwise) What was done to mitigate or reduce the potential for harm?

Dolma contains text instances that have been derived from web pages Common Crawl crawled from
the web. Content might contain sensitive information including personal information, or financial
information users of the web chose to put publicly online. This data is taken only from public places,
so the same data is or has been accessible via browsing the web. We have measured a variety of types
of personal information, and built tools specifically to remove some types of sensitive information,
and through our license we restrict what users can do with this data.

We recommend individuals to submit a request using through our form57 if they wish their information
to be removed.

If it relates to people, does it unfairly advantage or disadvantage a particular social group? In
what ways? How was this mitigated?

57
https://forms.gle/q4BNUUxUxKwKkfdT6
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Dolma is not a representative sample of none of its sources. It might underrepresent or overrepresent
some communities on the internet; further, papers in the peS2o subset are skewed towards STEM
disciplines; books in the Gutenberg library are mostly from the public domain (at the time of
publication, books published before 1927); finally, the English and Simple subset of Wikipedia and
Wikibooks might be biased towards events and people from the global north.

We did not attempt to alter distribution of social groups in Dolma. Large-scale interventions to correct
societal biases in large datasets remain challenging, and are left to future work.

If it relates to people, were they provided with privacy guarantees? If so, what guarantees and
how are these ensured?

This datasets contains text that was derived from web paged scraped by Common Crawl from the web.
For much of that data it’s not possible identify the authors. In many instances, creators purposely
choose to post anonymously online, so aiming to infer authorship can be ethically fraught. We
provide access to our data, and encourage any creators that would likely to have data from or about
them removed to reach out.

Does the dataset comply with the EU General Data Protection Regulation (GDPR)? Does it
comply with any other standards, such as the US Equal Employment Opportunity Act?

We created this dataset in aggregate, not separately identifying any individual’s content or information.
We took reasonable steps to remove types of personal information that were possible to reliably detect.
We restrict who has access to the data, and we release this under a license that prohibits uses that
might be deemed discriminatory. We also provide an avenue for any person to contact us to have text
from or about them removed from our corpus57.

Does the dataset contain information that might be considered sensitive or confidential? (e.g.,
personally identifying information) Does the dataset contain information that might be consid-
ered inappropriate or offensive?

This datasets contains text that was derived from web paged scraped by Common Crawl from the
web. Therefore, it can contain text posted on public websites by creators on the internet. If an author
publicly posted personal information or offensive content, it could be included in this dataset. We
took reasonable steps to remove types of personal information that were possible to reliably detect.
We also removed documents that contained sentences that were classified as being toxic.

K All Raw Ablation Results

K.1 Comparing Dolma With Other Corpora
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Figure 18: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), WikiText 103 (Merity et al., 2016), and Pile (Gao et al., 2020) (Val)
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Figure 19: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 100 dom (Chronopoulou
et al., 2022), Penn Tree Bank (Marcus et al., 1994), and Gab (Zannettou et al., 2018)
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Figure 20: Perplexity results on Paloma (Magnusson et al., 2023); subsets ICE (Greenbaum, 1991),
M2D2 (Reid et al., 2022) (Wiki), and Twitter AAE (Blodgett et al., 2016)
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Figure 21: Perplexity results on Paloma (Magnusson et al., 2023); subsets Manosphere (Ribeiro et al.,
2021)
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Figure 22: Perplexity results on Paloma (Magnusson et al., 2023); subsets mC4 (Xue et al., 2020)
(English), M2D2 (Reid et al., 2022) (S2ORC), and C4 (Raffel et al., 2020; Dodge et al., 2021)
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Figure 23: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 24: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 25: Training Cross Entropy

63



K.2 Deduping Strategy
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Figure 26: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 27: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 28: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 29: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)
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Figure 30: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 31: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 32: Training Cross Entropy
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K.3 Filtering of Personal Identifiable Information
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Figure 33: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), C4 100 dom (Chronopoulou et al., 2022), and Gab (Zannettou et al., 2018)
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Figure 34: Perplexity results on Paloma (Magnusson et al., 2023); subsets ICE (Greenbaum, 1991),
M2D2 (Reid et al., 2022) (Wiki), and Twitter AAE (Blodgett et al., 2016)
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Figure 35: Perplexity results on Paloma (Magnusson et al., 2023); subsets Manosphere (Ribeiro et al.,
2021)
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Figure 36: Perplexity results on Paloma (Magnusson et al., 2023); subsets mC4 (Xue et al., 2020)
(English), M2D2 (Reid et al., 2022) (S2ORC), and C4 (Raffel et al., 2020; Dodge et al., 2021)
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Figure 37: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 38: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 39: Training Cross Entropy
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K.4 Comparing Quality Filters for Web Pipeline
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Figure 40: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 41: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 42: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 43: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)
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Figure 44: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 45: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 46: Training Cross Entropy
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K.5 Full Comparison of Web Pipeline
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Figure 47: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 48: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 49: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 50: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)
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Figure 51: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 52: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 53: Training Cross Entropy
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K.6 Toxicity Filtering in Web Pipeline
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Figure 54: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 55: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 56: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 57: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)
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Figure 58: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 59: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 60: Training Cross Entropy
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K.7 Comparing Code Processing Pipeline
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Figure 61: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 62: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 63: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 64: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)
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Figure 65: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 66: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 67: Training Cross Entropy
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K.8 Studying Dolma Mixture
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Figure 68: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 69: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 70: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 71: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)
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Figure 72: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 73: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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K.9 Strategies to Format Conversational Forums Pipeline
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Figure 74: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 75: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 76: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 77: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)

0 20B 40B 60B

0.24

0.26

0.28

0.3

0.32

Atomic Content, Dedup, PII, Toxic

Atomic Content

Partial Threads, Dedup

Complete Threads

Partial Threads

OpenBookQA

Total Tokens

A
cc

ur
ac

y

0 20B 40B 60B

0.35

0.4

0.45

0.5

Atomic Content, Dedup, PII, Toxic

Atomic Content

Partial Threads, Dedup

Complete Threads

Partial Threads

ARC-Easy

Total Tokens

A
cc

ur
ac

y

0 20B 40B 60B

0.5

0.52

0.54

0.56

Atomic Content, Dedup, PII, Toxic

Atomic Content

Partial Threads, Dedup

Complete Threads

Partial Threads

Winogrande

Total Tokens

A
cc

ur
ac

y

Figure 78: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 79: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 80: Training Cross Entropy
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K.10 Evaluating Toxicity Filtering in Conversational Forums Pipeline
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Figure 81: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100 dom (Chronopoulou et al., 2022)
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Figure 82: Perplexity results on Paloma (Magnusson et al., 2023); subsets C4 (Raffel et al., 2020;
Dodge et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 83: Perplexity results on Paloma (Magnusson et al., 2023); subsets Gab (Zannettou et al.,
2018), ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022) (Wiki)
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Figure 84: Perplexity results on Paloma (Magnusson et al., 2023); subsets Twitter AAE (Blodgett
et al., 2016), mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al., 2022) (S2ORC)
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Figure 85: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)

80



0 20B 40B 60B

0.5

0.6

0.7

0.8

No Filtering

PII + NSFW + Hate Filter

NSFW + Hate Filter

SciQ

Total Tokens

A
cc

ur
ac

y

0 20B 40B 60B

0.3

0.35

0.4

0.45

No Filtering

PII + NSFW + Hate Filter

NSFW + Hate Filter

HellaSwag

Total Tokens

A
cc

ur
ac

y
0 20B 40B 60B

0.6

0.65

0.7

No Filtering

PII + NSFW + Hate Filter

NSFW + Hate Filter

PIQA

Total Tokens

A
cc

ur
ac

y

Figure 86: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 87: Training Cross Entropy

81



K.11 Training Olmo-1b
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Figure 88: Perplexity results on Paloma (Magnusson et al., 2023); subsets 4chan (Papasavva et al.,
2020), Dolma Reddit Subset, and Dolma Papers Subset
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Figure 89: Perplexity results on Paloma (Magnusson et al., 2023); subsets ICE (Greenbaum, 1991),
M2D2 (Reid et al., 2022) (Wiki), and Twitter AAE (Blodgett et al., 2016)
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Figure 90: Perplexity results on Paloma (Magnusson et al., 2023); subsets Manosphere (Ribeiro et al.,
2021)
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Figure 91: Perplexity results on Paloma (Magnusson et al., 2023); subsets mC4 (Xue et al., 2020)
(English), M2D2 (Reid et al., 2022) (S2ORC), and C4 (Raffel et al., 2020; Dodge et al., 2021)
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Figure 92: Perplexity results on Paloma (Magnusson et al., 2023); subsets Penn Tree Bank (Marcus
et al., 1994), Dolma Wikipedia Subset, and Gab (Zannettou et al., 2018)
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Figure 93: Perplexity results on Paloma (Magnusson et al., 2023); subsets Pile (Gao et al., 2020)
(Val), Dolma Books Subset, and C4 100 dom (Chronopoulou et al., 2022)
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Figure 94: Perplexity results on Paloma (Magnusson et al., 2023); subsets WikiText 103 (Merity
et al., 2016), Dolma Code Subset, and Dolma Web Subset
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Figure 95: Results downstream tasks OpenBookQA (Mihaylov et al., 2018), ARC-E (Clark et al.,
2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 96: Results downstream tasks SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), and
PIQA (Bisk et al., 2019)
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Figure 97: Training Cross Entropy
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