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Automatic question answering for 
multiple stakeholders, the epidemic 
question answering dataset
Travis R. Goodwin   1 ✉, Dina Demner-Fushman   1, Kyle Lo2, Lucy Lu Wang2, Hoa T. Dang3 & 
Ian M. Soboroff3

One of the effects of COVID-19 pandemic is a rapidly growing and changing stream of publications 
to inform clinicians, researchers, policy makers, and patients about the health, socio-economic, and 
cultural consequences of the pandemic. Managing this information stream manually is not feasible. 
Automatic Question Answering can quickly bring the most salient points to the user’s attention. 
Leveraging a collection of scientific articles, government websites, relevant news articles, curated 
social media posts, and questions asked by researchers, clinicians, and the general public, we developed 
a dataset to explore automatic Question Answering for multiple stakeholders. Analysis of questions 
asked by various stakeholders shows that while information needs of experts and the public may 
overlap, satisfactory answers to these questions often originate from different information sources or 
benefit from different approaches to answer generation. We believe that this dataset has the potential 
to support the development of question answering systems not only for epidemic questions, but for 
other domains with varying expertise such as legal or finance.

Background & Summary
The COVID-19 pandemic has highlighted two major problems with access to reliable domain-specific informa-
tion: (1) information providers are rapidly generating reams of potentially vital information that might never 
reach their intended audience, and (2) information seekers struggle to find answers to their specific and chang-
ing information needs in the rapidly growing and changing body of communications. These two problems are 
effectively two sides of the same coin, and making information easier to discover reduces the potential for vital 
information to remain overlooked by its intended audience. Information Retrieval (IR) systems (e.g., search 
engines such as Google, Bing, or PubMed) are now an integral part of information seeking and one of the main 
tools used to satisfy information needs. The pandemic exposed a major problem when relying on informa-
tion retrieval systems under stressful and fast-changing circumstances: existing solutions retrieve hundreds 
or thousands of documents –- many of which may not be relevant to the user’s specific information need. This 
needlessly increases the time and mental effort required by information seekers who must read through these 
documents to find answers to their information needs. Question Answering is a research area aiming to alleviate 
the problem of finding pertinent information from thousands of documents by bringing the most salient points 
of relevant documents to focus immediately, saving time and highlighting information that may have been 
overlooked.

To this end, we propose a new question answering dataset: Epidemic QA (EPIC-QA), intended to eval-
uate automatic approaches for answering ad-hoc questions about the disease COVID-19, its causal virus 
SARS-CoV-2, related coronaviruses, and the recommended response to the pandemic. While COVID-19 has 
been an impetus for a large body of emergent scientific research and inquiry, the response to COVID-19 raises 
questions for the general public. The rapid increase in coronavirus literature and evolving guidelines on com-
munity response creates a challenging burden not only for the scientific and medical communities but also the 
general public to stay up-to-date on the latest developments. Consequently, the goal of the dataset is to evaluate 
systems on their ability to provide timely and accurate expert-level answers as expected by the scientific and 
medical communities as well as answers in suitable language for the general public. The EPIC-QA dataset con-
sists of (a) questions collected from various stakeholders who need information on COVID-19, (b) documents 
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– including scientific research articles suited for experts as well as relevant news, social media, and pages from 
authoritative websites intended for the general public, and (c) answers to these questions extracted from docu-
ments in the dataset and systematically annotated and judged by experts.

Only a handful of publicly available health-related QA datasets exist. In terms of information retrieval, 
CORD-191 is the most widely used document collection, containing documents from PubMed, research 
articles from the World Health Organization (WHO), pre-prints from bioRxiv, medRxiv, and arXiv, and 
SemanticScholar. CORD-19, however, does not provide questions or answers. In terms of COVID question 
answering, CovidQA2 provides 124 question–article–answer triplets from 85 articles; COVID-Q3 consists 
of 1,690 questions (without answers) annotated into 15 categories and 207 clusters; Medical Question Pairs 
(MQP)4 contains 3,048 pairs of medical questions annotated as being similar or dissimilar to COVID-19 FAQs; 
the Synergy Task of the 2021 BioASQ Challenge (http://www.bioasq.org/) included four rounds of binary, fac-
toid, list, and summary questions based on the CORD-19 collection; and the 2021 TREC Health Misinformation 
Track (https://trec-health-misinfo.github.io/) includes topics focused on COVID-19 with annotations indi-
cating whether documents contradict the topic’s answer. For a detailed review of additional natural language 
processing resources for COVID-19, see Chen et al. (2021)5. By contrast, EPIC-QA, which incorporates both 
public-facing and expert-level documents, is the only dataset exploring the difference between answers suitable 
for the general public and those appropriate for experts. It is the only dataset designed to include a wide variety 
of unique possible answers for each question.

While there is overlap in the types of questions asked by different stakeholders, the answers to such ques-
tions should vary based on the background knowledge of the user. For example, consider the simple question 
illustrated in Fig. 1, How does the vaccine work? In the eyes of an expert, an answer should indicate the exact 
mechanism and pathways involved. By contrast, for a member of the general public, this information is too 
involved and may cause confusion; instead, a more appropriate answer would provide a more general overview 
of the role of the vaccine and a high-level description of its mechanism. In the context of the rapidly accelerating 
knowledge of COVID-19, managing this duality between expert- and general- level information is even more 
important. It is our hope that the EPIC-QA dataset will stimulate research in automatic question answering not 
only to support providing high-quality timely information about COVID-19, but also to support the develop-
ment of generalizable approaches to meeting information needs in the face of varying levels of expertise for 
other domains, such as general healthcare, finance, or legal.

Methods
Question answering systems traditionally involve two main steps: an information retrieval step, in which 
relevant documents are retrieved for a given question, and an answer extraction step, in which relevant pas-
sages or answers are identified within the retrieved documents and extracted as-is or used to synthesize an 
answer. Recently, end-to-end question answering systems have been developed in which (deep) neural net-
works are trained to jointly identify relevant passages and extract answers from those passages. Consequently, 
the EPIC-QA dataset includes two collections intended to facilitate research on (a) answer extraction or (b) 
end-to-end question answering, respectively. The questions in the answer-extraction dataset are adapted from 
the queries of the TREC-COVID retrieval shared task (https://ir.nist.gov/trec-covid), and are associated with the 
set of relevancy annotations from that task. For the end-to-end dataset, we introduce a novel set of questions, 
and provide relevant documents and answer annotations without associated retrieval relevance rankings. These 
two collections can be used separately or in concert to study the relationship between document retrieval and 
answer extraction. Both collections consist of three components:

	 1.	 Two sets of manually-produced questions, one asked by the general public as well as another asked by 
experts pertaining to COVID-19;

	 2.	 A collection of documents relevant to COVID-19 including published and pre-print biomedical research 
articles as well as documents obtained from government websites, news, and social media, automatically 
parsed into sentences; and

How does the vaccine work?
SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T
cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered
individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell
responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in
magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and
neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in
SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-
naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals.

Painter, Mark M et al. “Rapid induc�on of an�gen-specific 
CD4+ T cells is associated with coordinated humoral and cellular 
immunity to SARS-CoV-2 mRNA vaccina�on.” Immunity.

“Understanding How COVID-19 Vaccines Work.” Online: cdc.gov

COVID-19 vaccines help our bodies develop immunity to the virus that causes COVID-19 without us having to get the illness.
Different types of vaccines work in different ways to offer protection. But with all types of vaccines, the body is left with a
supply of “memory” T-lymphocytes as well as B-lymphocytes that will remember how to fight that virus in the future.

Fig. 1  Examples of different answers appropriate for experts and the general public, respectively.
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	 3.	 A diverse list of manually-produced answers for each question as well as a set of relevant document 
excerpts with manual sentence-level annotations indicating which answers, if any, are evidenced by each 
sentence.

To facilitate answer-extraction research, the questions in the answer-extraction dataset are additionally asso-
ciated with a set of relevant documents as might be retrieved by an optimal search engine, while the questions in 
the end-to-end dataset are not. We detail the process by which each of these components was produced.

Generating questions.  Two sets of questions are included: one for expert-level questions and one for the 
general public. By design, many of the expert and consumer questions overlap in focus to facilitate comparison 
between both types of stakeholders. For the answer extraction dataset, we adapted the topics evaluated in the 
fourth round of TREC-COVID (https://ir.nist.gov/covidSubmit). The majority of these questions originated from 
users’ interactions with MedlinePlus. Additional scientific questions were developed based on group discussions 
from the National Institutes of Health (NIH) special interest group on COVID-19, questions asked by Oregon 
Health & Science University clinicians, and responses to a public call for questions. The TREC-COVID topics 
included expert-level background descriptions of the user’s information need; to facilitate public-facing question 
answering we produced public-friendly backgrounds for each question. We provide the document-level relevance 
judgments produced during the TREC-COVID evaluation for these questions. The answer extraction collection 
includes 45 expert questions and 42 general public questions with document-level relevance judgments. For the 
end-to-end collections, a new set of 30 expert and 30 general public questions were developed, none of which 
were evaluated in TREC-COVID; consequently, these questions do not come with document-level relevance 
judgments. Example questions are provided in Fig. 2. While these may seem like a small number of questions 
(87 answer extraction questions in total and 60 end-to-end questions in total), each question is associated with 
multiple answers, and 45–60 passages hand-annotated at the sentence level to indicate which answers, if any, are 
included in each sentence.

Collecting documents.  Each document in EPIC-QA includes explicitly pre-defined contexts (a generali-
zation of paragraphs or sections) and sentence boundaries. To support both levels of expertise, the document 
collections consists of two parts: scientific and medical research, and public-facing online documents.

Scientific and research documents.  We adapt the collection of biomedical articles released for the COVID-
19 Open Research Dataset Challenge (CORD-19)6. The dataset was created by the Allen Institute for AI in 
partnership with the Chan Zuckerberg Initiative, Georgetown University’s Center for Security and Emerging 
Technology, Microsoft Research, and the National Library of Medicine – National Institutes of Health, in coor-
dination with The White House Office of Science and Technology Policy. The CORD-19 collection includes a 
subset of articles in PubMed Central (PMC) as well as pre-prints from bioRxiv and medRxiv. Contexts in this 
collection correspond to automatically identified paragraphs in the articles’ abstracts, or main texts. We include 
two snapshots of CORD-19: a snapshot from June 19, 2020 to be used with the answer extraction collection, and 
a snapshot from October 22, 2020, to be used for the end-to-end collection.

Public-facing documents.  We include a subset of the articles used by the Consumer Health Information 
Question Answering (CHIQA) service of the U.S. National Library of Medicine (NLM)7. This collection includes 
authoritative articles from the Centers for Disease Control and Prevention (CDC); the Genetic and Rare Disease 
Information Center (GARD); the Genetics Home Reference (GHR); Medline Plus; the National Institute of 
Allergy and Infectious Diseases (NIAID); and the World Health Organization (WHO). Contexts in this col-
lection correspond to paragraphs or sections as indicated by the HTML markup of the document. All articles 
were filtered for COVID-19 content using the terms in Fig. 3. In the end-to-end collection, we also included 
265 Reddit threads as well as a subset of the CommonCrawl News Crawl (CCNC) from January 1 through April 
30, 2020, as used in the TREC Health Misinformation Track (https://trec-health-misinfo.github.io/). To avoid 
misinformation, we only considered Reddit threats from the heavily-moderated /r/askscience community 

Fig. 2  Example questions included in EPIC-QA, shown above their corresponding backgrounds.
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that were tagged as pertaining to COVID-19, Medicine, Biology, or the Human Body (and which also contain 
the COVID-19 terms in Fig. 3). Likewise, to avoid irrelevant pages and misinformation, CCNC documents were 
filtered by top-level domain (i.e., ".gov" or ".edu"), using the top 100 first-level domains as measured by SALSA8, 
PageRank9, and HITS10; remaining pages were filtered for COVID-19 content using the terms in Fig. 3.

Producing answers.  When producing answers for the EPIC-QA dataset, our intent was to explore the land-
scape of answers asserted in the document collection. Thus, we consider any statement that answers the ques-
tion as an “answer” regardless of whether or not the answer is factually accurate at the time the document was 
authored or given current information. The answers in this dataset are intended as an intermediary step where-in 
one would like to explore all answers provided by the document collection – both correct answers as well as incor-
rect answers that people may have discovered on their own. Answers were produced by applying multiple auto-
matic question answering systems to the questions in EPIC-QA to identify contexts that may answer the question 
(see Technical Validation for more details). These contexts were pooled at a depth of five for expert questions and 
a depth of eight for questions from the general public, resulting in roughly 45–60 contexts per question. Human 
assessors read these retrieved contexts and judged them. Specifically, 17 medical indexers with five to thirty years 
of experience at the National Library of Medicine analyzed the pooled contexts in two rounds: (1) an answer-key 
generation round, followed by (2) a sentence-level answer annotation round. Annotations were performed as part 
of the medical indexers’ official duties at the National Library of Medicine.

Answer key generation.  In the first round, assessors had access to a pool of contexts identified for a given 
question as well as an ad-hoc search engine over the document collection. The role of the answer key generation 
round was for assessors to explore the contexts identified by automatic question answering systems as well as 
the document collection to determine a set of atomic “facts” that answer the question based on the question’s 
information need or background (see Fig. 2). As in Voorhees (2005)11, we refer to these facts as nuggets, such 
that each nugget indicates a fact for which the assessor could make a binary decision as to whether a context or 
sentence contained that fact. Example nuggets that were produced for the question “Which COVID-19 vaccine 
trials were paused and what were the health safety concerns?” are illustrated in Fig. 4: lack of benefit, patient 
safety, etc. The primary role of this round is to create an answer key for the question comprised of nuggets 
identified from pooled contexts or the assessor’s own ad-hoc search of the collection. The search engine was pro-
vided to help assessors explore the topic and identify nuggets that the assessor may be aware of from their prior 
knowledge of the question but which may not have been included in any of the pooled contexts. Assessors were 
not expected to exhaustively identify every possible nugget; rather the intent was for them to identify important 
(at the discretion of the assessor) nuggets that they feel should be included in the answer key based on their 
understanding of the question.

Sentence-level answer annotation.  In the second round, the answer key (list of nuggets) was fixed. Assessors 
were given the same set of pooled contexts used in round one. This time, they were asked to annotate all sen-
tences in each context indicating which nugget(s) (if any) are addressed by each sentence. For example, for the 
question “Which COVID-19 vaccine trials were paused and what were the health safety concerns?” the sentence 
“[I]n the light of a recent publication...on the lack of safety and efficacy of HCQ in the treatment for COVID-19 
patients, the Executive Group of the Solidarity Trial decided to implement a temporary pause of the HCQ arm 

Fig. 3  Terms used to test documents for COVID-19 (note: while terms like Corona or Wuhan may appear 
under-specified, all documents originate from healthcare-focused collections resulting in few false positive 
matches).

Fig. 4  Examples of information “nuggets” or answers produced during answer key generation.
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within the trial as a precaution, while the safety data is being reviewed” was annotated as containing the expert 
nuggets: COVID trial, trial pause, lack of benefit, hydroxychloroquine, patient safety, and review of the data.

Data Records
The Epidemic Question Answering (EPIC-QA) dataset is available through the Open Science Foundation (OSF) 
at https://doi.org/10.17605/OSF.IO/VNYK812. The questions in the EPIC-QA dataset are provided in four files 
following the JSON format illustrated in Fig. 5:

•	 ae/expert_questions.json contains 45 expert-level questions produced for the answer extraction 
collection; and

•	 ae/general_questions.json contains 42 questions from the general public produced for the answer 
extraction collection.

•	 e2e/expert_questions.json contains 30 expert-level questions produced for the end-to-end col-
lection; and

•	 e2e/general_questions.json contains 30 questions from the general public produced for the end-
to-end collection.

Fig. 5  JSON Schema for questions.

Fig. 6  JSON Schema for full-text documents. Note: the full-text of the document is provided within the list of 
contexts of that document.
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The documents included in the EPIC-QA dataset are provided separately for the answer extraction and 
end-to-end collections. For each collection, each document is provided as a separate JSON file, adhering to the 
JSON schema illustrated in Fig. 6:

•	 ae/cord19/ contains 129,069 JSON files, each corresponding to a biomedical research article from a June 
19, 2020 snapshot of CORD-19; and

•	 ae/general/ contains 925 JSON files, each corresponding to a government or health agency website 
crawled on June 10, 2020.

•	 e2e/cord19/ contains 236,035 JSON files, each corresponding to a biomedical research article from an 
October 22, 2020 snapshot of CORD-19;

•	 e2e/ask_science/ is initially empty (users retain copyright on each of their comments and posts on 
Reddit, preventing us from redistributing their data directly), however, it can be populated using the Python 
script scripts/populate_reddit.py to create 263 JSON files, each corresponding to a post made 
between December 01 2019 and October 29, 2020 to the /r/askscience community on Reddit tagged by 
community moderators as corresponding to COVID-19, health, medicine, or biology, which contained one 
of the COVID-19 keywords shown in Fig. 3

•	 e2e/ccns_trec/ contains 114,645 JSON files, each corresponding to an HTML-parsed website included 
in the CommonCrawl News Subset used by the TREC Misinformation Track containing one of the COVID-
19 keywords shown in Fig. 3; and

•	 e2e/chqa contains 2,739 JSON files, each corresponding to an October 9, 2020 HTML-parsed snapshot of a 
web page affiliated with the NIH, CDC, or WHO containing one of the COVID-19 keywords shown in Fig. 3.

Finally, answers are provided in four files, corresponding to the answer extraction and end-to-end collec-
tions of expert and public questions. For each question: each answer (i.e., nugget) is associated with the set of 
sentence-IDs that nugget was identified within, as shown by the JSON schema in Fig. 7. The answer extrac-
tion collection additionally includes document-level relevance judgments in trec_eval (https://github.com/
usnistgov/trec_eval) format, as illustrated in Fig. 8. Note: due to time and budget restrictions, only 21 expert 
and 17 general public questions were fully-annotated with answers in the answer extraction collection. Finally, 
EPIC-QA also includes the rankings and answers provided by all participants of the associated EPIC-QA evalu-
ation at the Text Analysis Conference (TAC, see Technical Validation for details), as well as an “ideal” ranking of 
answers based on our assessor’s answer annotations.

Fig. 7  JSON Schema for answers.
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Technical Validation
To validate the EPIC-QA dataset, we organized a community evaluation at the 2020 Text Analysis Conference 
(TAC), in which participants were provided with the dataset (without answers) and asked to submit ranked 
lists of up to 1,000 relevant passages for each question, where a passage was defined as a contiguous sequence of 
sentences from a single context. We first evaluated the answer extraction collection, and provided the judgments 
produced from that evaluation as additional data for participants of the later end-to-end evaluation.

We encouraged teams to explore diversity in their answers rather than returning many passages providing the 
most common or obvious answer. To this end, we validated EPIC-QA using a modified version of Normalized 
Discounted Cumulative Gain13 (NDCG) which we refer to as the Normalized Discount Novelty Score (NDNS). 
Importantly, while the cumulative gain in NDCG can be computed for a document independently of the other 
retrieved documents, the Novelty Score (NS) measures the information in a passage that has not been seen pre-
viously in the ranked list of passages. Formally, we define the novelty score, NS, of passage p as:
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where na is the number of novel answers in passage p and ns is the number of sentences in the passage (where an 
answer is considered novel if it was not included in any earlier-retrieved passages for the question.). This metric 
ensures that identified passages must be brief (i.e., they must express a novel nugget in as few sentences as pos-
sible) and they should not contain sentences with only nuggets provided in previous answers. As in NDCG, we 
(A) compute the discounted cumulative novelty score, DNS, by adjusting the novelty score, NS, of each answer 
retrieved up to rank l using a logarithmic reduction factor, and (b) normalize the DNS of ranking a a a, , l1 �=  
by the DNS of the optimal or ideal ranking of possible answers, �a that could have been retrieved for that question 
(based on all the relevance judgments produced for that question). In our evaluation, we used beam-search with 
a width of 10 to determine the ideal ranking of answers. We report three variations of NDNS which differ in how 
sentences are counted when calculating NS:

	 1.	 Exact, which prioritizes passages that contain as many novel nuggets in as few sentences as possible, such 
that ns is exactly equal to the number of sentences in the passage;

	 2.	 Partial, in which the number of sentences used to express novel nuggets is not considered, i.e., ns is the 
number of sentences if all sentences with novel nuggets were merged into a single sentence before 
counting; and

	 3.	 Relaxed, in which the number of sentences used to express novel or previously seen nuggets is not 
considered, i.e., ns is the number of sentences if all sentences containing novel nuggets were merged into a 
single sentence, and all sentences containing previously seen nuggets were merged into a separate single 
sentence before counting.

The evaluation script is included with the dataset.

Answer Extraction Validation.  A total of 17 submissions were received from eight teams for the expert 
questions, and 10 submissions from six teams for the general public questions, as shown in Table 1. We observed 
that the ixa and IBM submissions exhibited the best performance for expert questions while the HLTRI sub-
missions obtained the highest performance followed by IBM for the questions from the general public. The ixa 
runs used a neural language model powered by SciBERT14 fine-tuned on the SQuAD 2.015 general domain ques-
tion answering data; their second and third runs additionally fine-tuned on QuAC16, a dialogue-based question 
answering dataset involving crowd workers and a teacher discussing a passage of text. Interestingly, their third and 
best-performing run relied on their own information retrieval system rather than the relevance labels produced 
during TREC-COVID. IBM’s three runs ignored the included relevance labels, using three different ensembles 
of elastic search with passage retrieval and/or neural re-ranking approaches. Their final runs were a combination 
of their ensemble information retrieval scores and scores from RoBERTa17 fine-tuned on Natural Questions18, 
a general domain question answering dataset derived from Google search queries and Wikipedia passages. The 
HLTRI runs relied on a BioBERT19-based neural passage re-ranker applied to sentence shingles (runs of multiple 
adjacent sentences) using the TREC-COVID relevance labels. Overall, while the relevance judgments did help 

Fig. 8  Example format for document-level relevance judgments provided for the answer extraction collection. 
Question ID indicates which question the relevance judgment was made for; Judgment Round refers to the 
round of the TREC-COVID evaluation in which the judgment was made (this may be safely ignored for 
EPIC-QA); Document ID indicates which document was judged; and Relevance indicates the relevance of that 
document, with 0 for not relevant, 1 for partially relevant, and 2 for fully relevant.
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with answering questions for the general public, their impact was less clear for expert-level questions, suggesting 
that documents may be relevant from an information retrieval perspective despite not having explicitly extradit-
able answers to the question.

End-to-End Validation.  For the end-to-end questions, a total of 16 submissions were received from seven 
teams for expert questions, and 12 submissions from five teams were received for questions from the general pub-
lic, as shown in Table 2. For expert questions, the HLTRI runs generally exhibited the best performance, though 
Yastil_R’s first run outperformed HLTRI’s first run. The HLTRI runs relied on a BM25-based information 
retrieval step20, followed by a BERT-based21 re-ranker, and a final-step inspired by recognizing question entail-
ment22. The first run from Yastil_R relied on an information retrieval step informed by BM25, DeepCT23, 
ColBERT24, and docTTTTTquery25, followed by an answer-extraction step relying on BERT fine-tuned on 
MS-MARCO26. When looking at the general public, the top performance was exhibited by h2loo, whose runs 
involved a BM25-based retrieval step followed by point-wise and pair-wise re-ranking using T5, and a final 
sentence-re-ranking step using maximal marginal relevance (MMR) to improve diversity.

When comparing between the answer extraction and end-to-end validation results, it is clear that teams 
generally performed better on end-to-end despite end-to-end being a more challenging problem. This is likely 
explained by the fact that the answer extraction phase of the TAC challenge was designed and promoted as a 
preliminary data-collection round, while the end-to-end questions were presented as the primary round for 
evaluation. It is our belief that the higher performance on the end-to-end evaluation suggests that teams spent 
more of their research effort on that task than on the answer extraction task.

Overall, teams were able to produce satisfactory answers using a variety of approaches based on the EPIC-QA 
data. Interestingly, the changing in ranking between expert and public performance also suggests that one-size 
does not fit all, and that systems need to better account for varying stakeholders, such as experts and the general 
public.

Answer Validation.  Fig. 9 provides the top scoring expert and general answers extracted by the top per-
forming expert (hltri’s third run) and public (h2oloo’s second run) systems developed using the EPIC-QA 
dataset. Overall, we can see that systems developed using this dataset obtained reasonable results: they were able 
to identify diverse, concise, and reasonably complete answers that can satisfy experts and the general public. 

System

(a) Expert (b) General Public

Relaxed Partial Exact Relaxed Partial Exact

CORONAWHY

  Run 1 — — — 0.059 0.059 0.043

covidbert

  Run 1 0.143 0.142 0.131 0.364 0.364 0.389

  Run 2 0.149 0.149 0.165 0.281 0.276 0.257

Dindadiel

  Run 1 0.148 0.144 0.158 — — —

HLTRI

  Run 1 0.302 0.295 0.327 0.488 0.482 0.475

IBM

  Run 1 0.294 0.293 0.325 0.398 0.396 0.413

  Run 2 0.293 0.293 0.306 0.374 0.372 0.39

  Run 3 0.294 0.294 0.327 0.394 0.394 0.409

ixa

  Run 1 0.276 0.277 0.3 — — —

  Run 2 0.303 0.304 0.338 — — —

  Run 3 0.305 0.307 0.341 — — —

nlm_lhc_qa

  Run 1 0.113 0.111 0.109 0.278 0.272 0.253

  Run 2 0.134 0.132 0.131 — — —

UPC_USMBA

  Run 1 0.226 0.218 0.215 0.315 0.307 0.302

  Run 2 0.204 0.198 0.212 0.307 0.299 0.286

vigicovid

  Run 1 0.191 0.192 0.192 — — —

  Run 2 0.266 0.267 0.297 — — —

  Run 3 0.263 0.265 0.289 — — —

Table 1.  EPIC-QA answer extraction NDNS results for (a) Expert and (b) General Public questions. . Note: 
teams were not required to use the same system when preparing runs for expert and general public questions.
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This indicates that the EPIC-QA dataset can be used to train reliable question answering systems to answer 
epidemic-related questions posed by different stakeholders.

System

(a) Expert (b) General Public

Relaxed Partial Exact Relaxed Partial Exact

h2oloo

  Run 1 0.388 0.34 0.341 0.407 0.359 0.361

  Run 2 0.39 0.344 0.344 0.414 0.366 0.368

  Run 3 0.376 0.337 0.338 0.382 0.338 0.339

HLTRI

  Run 1 0.408 0.359 0.36 0.346 0.304 0.305

  Run 2 0.413 0.363 0.364 0.353 0.312 0.313

  Run 3 0.421 0.37 0.371 0.363 0.316 0.317

IBM

  Run 1 0.353 0.315 0.315 0.267 0.249 0.245

  Run 2 0.367 0.331 0.329 0.282 0.268 0.264

  Run 3 0.354 0.328 0.327 0.278 0.268 0.263

nlm_lhc_qa

  Run 1 0.209 0.223 0.219 0.183 0.186 0.184

vigicovid

  Run 1 0.359 0.329 0.329 — — —

  Run 2 0.374 0.336 0.334 — — —

  Run 3 0.391 0.345 0.344 — — —

UPC_USMBA

  Run 1 0.148 0.126 0.127 0.033 0.03 0.03

  Run 2 — — — 0.175 0.176 0.172

Yastil_R

  Run 1 0.41 0.361 0.362 — — —

  Run 2 0.385 0.338 0.339 — — —

Table 2.  EPIC-QA end-to-end NDNS results for (a) Expert and (b) General Public questions. . Note: teams 
were not required to use the same system when preparing runs for expert and general public questions.

Fig. 9  The top answers retrieved by the best-performing automatic systems for two questions in EPIC-QA. The 
specific answer passage identified by the system is typeset in bold.
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Impressions.  We presented the Epidemic Question Answering (EPIC-QA) dataset, designed to evaluate and 
draw attention to the important problem of answering questions about COVID-19 from emergent literature, 
as well as to explore the differences between answers expected by different stakeholders. The EPIC-QA dataset 
consists of two parts, intended to facilitate answer extraction or end-to-end question answering research, respec-
tively, with each part including (a) two sets of questions collected from two types of stakeholders (experts and the 
general public), (b) manually-produced answers to these questions extracted from documents in the dataset and 
systematically hand-annotated and judged by human experts, and (c) a document collection including scientific 
research articles suited for experts as well as relevant news, social media, and pages from authoritative websites 
intended for the general public. Technical validation accomplished through a community evaluation at the Text 
Analysis Conference (TAC) indicates that systems can discover useful answers in the collections, and that answers 
(and supporting passages) expected by different stakeholders can vary substantially. We believe that our technical 
validation demonstrates the importance of exploring the diverse landscape of answers available online for health 
questions and shows the importance of accounting for varying levels of understanding when identifying satis-
factory answers to health questions, and hope that this dataset will be of value to researchers exploring answer 
diversity, multiple stakeholders, or open-ended healthcare question answering.

Usage Notes
We have provided instructions for how to process this dataset in the README file provided with the dataset. 
Descriptions of automatic systems developed using this dataset are available at https://tac.nist.gov.

Code availability
The code used to prepare the EPIC-QA dataset is provided at https://github.com/h4ste/epic_qa, and a Python 
script for computing the evaluation metrics reported in the technical validation section of this manuscript is 
provided with the dataset.
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